

Student Academic Outcomes Report

Fall 2019

BOARD OF SCHOOL DIRECTORS

Michael J. Riemer, President
Hugh L. Beal
Elaine L. Cappucci
William L. Cooper
Aviva E. Diamond

Sarah L. Olbrich, Vice President
Alfonso Frioni
Lawrence M. Lebowitz
Stephen J. Strotmeyer
Thomas P. Peterson, Solicitor

MT. LEBANON SCHOOL DISTRICT ADMINISTRATION

Timothy J. Steinhauer, Ed.D. Marybeth D. Irvin, Ph.D.
Ronald P. Davis, Ed.D.

Superintendent of Schools
Assistant Superintendent of Elementary Education
Assistant Superintendent of Secondary Education

BUILDING PRINCIPALS

Jason Ramsey
Nicole Giehll
Michelle Murray, Ed.D.
Brett Bielewicz
Natasha Dirda
Ron Kitsko
Melissa Nelson, Ed.D.
Sarah Shaw, Ed.D.
Christopher Wolfson
Brian McFeeley

Foster Elementary School
Hoover Elementary School
Howe Elementary School
Jefferson Elementary School
Markham Elementary School
Lincoln Elementary School
Washington Elementary School
Jefferson Middle School
Mellon Middle School
Mt. Lebanon High School

TABLE OF CONTENTS

Introduction 1
Executive Summary 6
Mission Statement 10
The Graduate

- Post Graduate Activities 11
- Analysis of College Attendance by Competitiveness 13
- Early Graduation 15
- Schools Attended by Mt. Lebanon's Class of 2019 16
The High School Student
- Advanced Placement Scores 17
- ACT (American College Test) Scores 28
- SAT Reasoning (College Board) 31
- PSAT (Preliminary SAT) /NMSQT (National Merit Scholarship Qualifying Test) Data 34
- Keystone Exams 37
The Middle School and Elementary School Student
- PSSA (Pennsylvania System of School Assessment) Data 41
- PVAAS (Pennsylvania Value Added Assessment System) Data 52
Future Ready PA Index
- Future Ready PA Index Overview 60
- Future Ready PA Index Data 62
Appendix - College Admissions Selector 65

INTRODUCTION

VISION-DRIVEN DECISION-MAKING: DATA GUIDES OUR PROGRESS

Background

The 2019 Student Academic Outcomes Report is a collection of aggregate data from the 2018-2019 school year used as indicators of programmatic and student success. This report represents summative achievement data that the District collects throughout the year via capstone assessments such as the SAT, ACT, Advanced Placement (AP), Keystone, and Pennsylvania System of School Assessment (PSSA) exams.

The Department of Education provides the District with disaggregated data from the Keystone and PSSA exams which is used to inform and direct school improvement efforts. Additionally the District regularly uses in-process diagnostic and formative benchmark assessments, including Measures of Academic Progress (MAP), Classroom Diagnostic Tools (CDT), and AIMSweb. These assessments, which are administered during the teaching and learning process, provide teachers with relevant information regarding student progress towards learning outcomes.

To the extent possible, the Student Academic Outcomes Report reflects trend data so patterns can be discerned, analyzed, addressed, and/or celebrated. It is important to note that data reflecting any single year is not indicative of a trend. It should be expected that there will be slight fluctuations in the data from year to year. Only through an analysis of a collection of results over time can valid conclusions be drawn regarding changes in student performance.

The District's Administration, Curriculum Councils, Department Chairs and Facilitators regularly examine and analyze additional student data to assist with program planning and evaluation. This additional data can include attendance, discipline, graduation rates, and graduation survey information.

The framework of this report is analogous to our curricular design model, Understanding by Design. This framework emphasizes that our curriculum design begins with the end in mind. Teachers and administrators backwards map the curriculum using "big ideas", "enduring understandings", and "essential questions" before identifying assessments and then lesson plans. This strategy keeps the curricular goal(s) as the focal point(s). Similarly, as a reflection of our curriculum design process, this report will begin with the end in mind: well-rounded graduates who are prepared for success in their chosen path. The focus of this report is academic achievement in the core content areas and does not include the many other important factors of student success, including student engagement in the arts, athletics and extracurricular activities.

Context

Mt. Lebanon School District is committed to ensuring that all students receive a Free and Appropriate Education (FAPE) in the most conducive and least restrictive environment. To this end the District prides itself on fostering and advancing a culture of academic inclusion, serving the needs of all students. Understanding the demographic profile of the District provides context to the data presented in this report.

Our District demographic data over the past five years, from the 2014-15 to the 2018-19 school year, continues with recent trends. First, our student enrollment continues to increase each year. Over the past five school years, the number of students served by the District has risen from 5309 to 5501 , an increase of 3.4% or 192 students overall. As our enrollment has increased, so has our percentage of students from diverse backgrounds. This percentage has increased by almost 50% since 2013, to nearly 14.29%. This increase represents students across all reported ethnicity categories.

Students are identified as economically disadvantaged if they are eligible to receive free or reduced-cost school meals through the National School Lunch Program. We continue to see a slight increase in these students, with 12.71\% identified in 2018-19 who qualify to receive this benefit.

Additionally, context can be important when comparing the results from the Mt. Lebanon School District to that of other high performing school districts. The Student Academic Outcomes Report includes, when available, achievement data from fifteen Pennsylvania Comparator School Districts. These fifteen school districts were selected based on their high and consistent performance on the summative data sources listed above. The comparator districts include: Central Bucks, Fox Chapel, Great Valley, Hampton, Lower Merion, Lower Moreland, North Allegheny, Peters Township, Radnor, South Fayette, Tredyffrin-Easttown, Unionville-Chadds Ford, Upper Dublin, Upper St. Clair, and Wall-ingford-Swarthmore.

Process

Data analysis is an integral component of the decision-making process and the Strategic Plan. We use a conceptual model of improvement that emphasizes thoughtful analysis of data, the identification of areas for growth, a targeted plan for improvement, and a process for monitoring change. The Professional Learning Communities (PLC) model is the structure by which student data is analyzed. PLCs are collaborative groups of teachers who examine and use data to improve student achievement by focusing on learning targets and standards. Other initiatives such as Multi-Tiered Student Support and Universal Design for Learning help teachers create and implement standardsaligned lessons that are structured to meet the differing needs of students. The District uses the following frameworks to analyze data:

- At the student level, individual results are used to determine appropriate instruction and necessary supports. Individualized Education Plan or an Individualized Learning Plan are created for all non-proficient students to help meet their learning goals. Interventions in the form of differentiation and remediation are provided by the classroom teacher and support staff. Progress is monitored regularly and new data used to determine next steps. Various intensities of interventions are available to students in the form of curricular materials and staff support.
- At the curricular level, both yearly and cohort achievement data are utilized by Curriculum Councils, secondary department chairs, and elementary facilitators to make decisions regarding learning standards, alignment, curricular resources and instructional strategies. This can occur at the course, grade level or content area level. Teacher committees are formed to respond to data indicators and make decisions regarding both major revisions and minor adjustments. Professional development planning is part of this process.
- At the building level, principals and teacher data teams analyze grade level and student data across and between years to identify issues. Each principal is required to develop a building level plan that addresses three key factors: content, process and motivation. Planning for professional development also emanates from the discussion of building data.

Data is an excellent tool that, when analyzed and leveraged, provides insight as to where improvement efforts should be directed so as to ensure the best education possible for each and every student.

Conclusions

Key findings from the examination of our current data indicate that:

- The various metrics continue to illustrate exceptional academic performance by our students on their standardized assessments.
- K-12 curriculum is rigorous, well-aligned to the standards, developmentally appropriate, and engaging for students.
- Instructional resources, including the use of technology where appropriate, supplement and complement the curriculum.
- Teaching methodologies are strong given the high levels of student performance.
- Academic performance remains strong with an increasingly diverse student population.

Key areas of focus:

- The District believes that the social and emotional well-being of students is a key contributor to their cognitive growth and academic performance. Project 13 is being launched to support this growth and development in our students. Beginning in the 2019-2020 school year, all students will benefit from the District's commitment to infuse the 25 competencies as listed in the Collaborative for Academic and Social and Emotional Learning (CASEL) model - in every class, in every grade, in every activity. Project 13 is aligned with the District's Social and Emotional Well-Being Strategic Plan goal.
- Remedial programs and supports to close identified achievement gaps.
- Underperforming student groups including economically disadvantaged, English as Second Language, and Special Education.

Recommendations

Given the District's philosophy of continuous improvement, it is important, as part of the improvement model aligned to Professional Learning Communities, to continue valuing the role data plays in our decision making process.

- The District will build capacity and understanding of the factors that impact student achievement.
- The District will pursue strategies that support mental health well-being.
- The District remains committed to providing adequate time for analysis, as well as professional development opportunities for teachers and administrators, to become even more proficient in the use of data.
- Our Curriculum Councils, department chairs, elementary facilitators and administrators will continue to use data in the refinement of curriculum, instructional strategies and resource materials.
- Data will be monitored to determine the implementation effectiveness of Universal Design for Learning and Multi-Tiered Student Support to address student needs at the classroom and lesson level.

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The data presented in the 2019 Student Academic Outcomes Report illustrates a positive outlook of the academic performance of the District. Our students continue to meet or exceed the high expectations inherent in our educational system and community. Student Academic Outcomes Report data has remained consistently strong; families, educators, and community members should take great pride in the performance of the Mt. Lebanon School District. The mission of the Mt. Lebanon School District, To provide the best education possible for each and every student, focuses our educators efforts and informs our decision-making.

Highlights of 2018-2019 Assessment Data:

Graduation Information (High School)

- The cohort graduation rate for the class of 2019 is 98.7%.
- 90.1% of the graduating class indicated that they would be attending a two or four year college program. (p. 12)
- The percentage of students attending the top two categories of Most Difficult and Very Difficult colleges equals 40.2%. (p. 14)

Advanced Placement (AP) (High School)

- Students earning scores of 3,4 or 5 outpaced contemporaries throughout Pennsylvania and the nation; 87.7\% of Mt. Lebanon examinees scored 3, 4 or 5 compared to 67.8% in Pennsylvania and 59.1% in the nation. (Note: This statistic includes students who take an advanced placement course exam with the course not being taught at Mt. Lebanon High School.) (p. 18)
- All Advanced Placement mean scores remain above 3.0. (p. 18)
- 809 students took one or more AP exams, an increase of 116 from 2018. (p. 20)
- Mean scores $(\mathrm{n}=809)$ are at or above the national average on 20 of the 21 tests. (p. 20)
- The following subtests had scores at least one point higher than the national average: Art, Biology, Chemistry, English Language/Composition, English Literature/Composition, Environmental Science, European History, Physics 1, and Physics E \& M. (p. 20)
- Several tests had mean scores of 4.0 and above. These include: Art, English Language/Composition, English Literature/Composition, Environmental Science, French, and Physics E\&M. (p.20)
- Out of every 10 students taking advanced placement courses at Mt. Lebanon, on average, 65% scored at a 4 or 5. (p. 26)
- For the graduating class of 2019, 51.1% of the $12^{\text {th }}$ graders scored a 3 or higher on at least one AP exam during their high school career. (p. 27)

ACT (High School)

- Scores on the English (26.8), Reading (26.9), and Composite (26.4) are five year highs for the District. (p. 29)
- Scores remain significantly higher than state and national means. The average composite score was 26.4, compared to the national average of 20.7 and the Pennsylvania state average of 23.6. (p. 30)

SAT (High School)

- Since the migration to the new SAT format (ERW \& Math), the District scores are at a three year high - ERW (617) and Math (603). (p. 32)
- Scores remain significantly higher than state and national means. The combined Mathematics \& ERW score of 1220 is 157 points higher than the national mean and 129 points higher than the Pennsylvania mean. (p.33)
- 85.3% of the class took the SAT exam. (p.33)

PSAT/NMSQT - National Merit (High School)

- The graduating class of 2020 (2019 Juniors) had 22 students qualify as Commended or Semi-Finalist National Merit students; 9 of the 22 were SemiFinalists. (p.35)

Keystone Exams (Grades 8-11)

- The overall proficiency rate for the $11^{\text {th }}$ grade cohort in 2018-2109 (Class of 2020) in Algebra 1 was 90.9\%. Our comparator schools' mean in Algebra 1 was 88.5\%. (p. 39)
- The overall proficiency rate for the $11^{\text {th }}$ grade cohort in 2018-2019 (Class of 2020) in Biology was 89.5%. Our comparator schools' mean in Biology was 88.2\%. (40)
- The overall proficiency rate for the $11^{\text {th }}$ grade cohort in 2018-2019 (Class of 2020) in English Literature was 94.0\%. Our comparator schools' mean in ELA was 92.4\%. (p.40)

PSSA (Grades 3, 4, 5, 6, 7, 8)

- Our District has exceeded State performance averages on 100% of the curricular standards' report categories and assessment anchors.
- District composite scores far exceed State averages - ELA by 30.5\% points, Math by 36.0% points, and Science by 22.4% points. (p. 43)
- Scores on all measures and at all grade levels far exceed state averages. (p. 44-46)
- Our comparator schools' mean in ELA was 86.6\%, compared to the District's mean of 91.4\%. (p. 50)
- Our comparator schools' mean in Math was 71.9\%, compared to the District's mean of 78.4\%. (p. 51)
- Our comparator schools' mean in Science was 88.8%, compared to 90.4%. (p.51)

PVAAS (Pennsylvania Value Added Assessment System)

This is a statistical model using a formula to describe student academic growth from the previous year's performance.

- There is significant evidence showing that the School District exceeded the standard for PA Academic Growth in grades 4-8 Composite ELA. (p. 53)
- There is significant evidence showing that the School District exceeded the standard for PA Academic Growth in grades 4-8 Composite Math. (p. 53)
- There is significant evidence showing that the School District exceeded the standard for PA Academic Growth in grades 4 Science. (p. 53)
- There is significant evidence showing that the School District exceeded the standard for PA Academic Growth in the Algebra 1 Keystone assessments; moderate evidence showing the School District exceeded the standard for PA Academic Growth in Biology; and evidence that the growth standard for PA Academic Growth was met for English Language Arts. (p. 59)

Future Ready PA Index

- All 10 schools have met the 2030 performance standard in English Language Arts. (p. 62)
- 9 out of 10 schools met the 2030 performance standard in Math; 10 out of 10 schools meet the 2019 performance standard. (p. 62)
- 9 out of 10 schools met the 2030 performance standard in Bio/Science; 10 out of 10 schools meet the 2019 performance standard. (p. 62)

Mt. Lebanon School District Mission Statement

To Provide the Best Education Possible for Each and Every Student

As defined by its constituents, students, staff, parents and community, the mission of the Mt. Lebanon School District is to provide the best education possible in a fiscally responsible manner. This means operating within the constraints of Local, State and Federal resources and limitations. Additionally, the Mt. Lebanon School District provides the best education possible for each individual student and every student collectively.

THE GRADUATE

POST GRADUATION ACTIVITIES FOR THE CLASS OF 2019

The following reports give the number and percentage of students from the class of 2019 attending 4-year colleges or universities by level of competitiveness.

Historically, the level of competitiveness was taken from Barron's Guide to Colleges to ensure a level of objectivity in review. This publication was discontinued by the publisher, and now the District is using Peterson's Four-Year Colleges (2019) to determine competitiveness rankings.

The report demonstrates that 22 students (5.3\%) from last year's graduating class are attending a 4-year college or university that is classified as "the most difficult" in the country. The percentage of students attending the top two categories (40.2\%), most difficult and very difficult combined, is a slight increase from the prior year. The total percentage of students attending the top three tiers of schools (85.1%) represents an increase from the prior year, recognizing that this is a new data source.

This year's report shows that a significant percentage of students from our District are being admitted to rigorous, competitive post-secondary institutions. This accomplishment continues to be significant given the environment for admission to top tier colleges has increased significantly in competitiveness over the past two decades. Because of this increased competition, one area of possible concern that will be carefully monitored over the next few years is the number and percentage of students getting into the most difficult colleges and universities. In general, national acceptance rates at these institutions have declined significantly in the last two decades. Data related to the percentage of students opting for state affiliated and public, state schools will also be closely scrutinized in coming years.

The following data is submitted to the state of Pennsylvania each year. The report summarizes the post high school activity of our graduating class of 2019. For the Class of 2019, the data indicates a slight decrease in the number of students attending 4-year colleges or universities and a slight decrease in the number of students attending 2-year colleges from the previous year. This is a trend that we are monitoring closely.

Reasons for 2-year interest may have included the national economic situation coupled with the continuing rise of tuition costs at 4 -year institutions. Additionally, students and families may have been seeking a phased approach to their post-secondary educations, with students attending more cost effective 2-year educational options with full intent of transferring to a 4-year educational option at a later date. Finally, specialized and technical education is becoming desirable to meet industry demands in the current economy.

MT. LEBANON POST GRADUATION ACTIVITIES SUMMARY CLASS OF 2019

GRADUATE ACTIVITY	STUDENTS	PERCENT
4-Year College and University	372	81.7%
2-Year College	38	8.4%
Total College-Bound Grads	410	90.1%
Technical Institute or Specialized Training	7	19
Employment	7	4.5%
Armed Services	12	2.5%
Other	455	100%
GRAND TOTAL		

2018 TREND DATA: COLLEGE ATTENDANCE BY COLLEGE COMPETITIVENESS

	2009		2010		2011		2012		2013	
	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%
Most Competitive	60	14.8\%	57	13.9\%	58	15.5\%	45	11.1\%	51	12.3\%
Highly Competitive	114	28.1\%	77	18.8\%	64	17.1\%	68	16.8\%	88	21.2\%
Very Competitive	97	24.0\%	115	28.0\%	103	27.5\%	100	24.7\%	124	29.8\%
Competitive	102	25.2\%	128	31.2\%	98	26.2\%	128	31.6\%	94	22.6\%
Less Competitive	22	5.4\%	24	5.9\%	15	4.0\%	56	13.8\%	18	4.3\%
Non Competitive	3	0.7\%	3	0.7\%	35	9.4\%	4	1.0\%	32	7.7\%
Specialized	7	1.7\%	6	1.5\%	1	0.3\%	4	1.0\%	9	2.2\%
TOTAL	405	100\%	410	100\%	374	100\%	405	100\%	416	100\%
	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%
Most Competitive	39	10\%	43	10.8\%	55	15.4\%	57	14.7\%	54	12.9\%
Highly Competitive	88	22.6\%	75	18.9\%	60	16.8\%	62	16.0\%	79	18.9\%
Very Competitive	133	34.1\%	126	31.9\%	99	27.7\%	116	29.9\%	106	25.4\%
Competitive	80	20.5\%	78	19.7\%	66	18.4\%	87	22.4\%	106	25.4\%
Less Competitive	16	4.1\%	20	5.1\%	24	6.7\%	7	1.8\%	18	4.3\%
Non Competitive	29	7.4\%	44	11.1\%	52	14.5\%	48	12.4\%	47	11.2\%
Specialized	5	1.3\%	9	2.5\%	2	0.5\%	11	2.8\%	8	1.9\%
TOTAL	390	100\%	395	100\%	358	100\%	388	100\%	418	100\%

2019 TREND DATA: COLLEGE ATTENDANCE BY COLLEGE COMPETITIVENESS (Peterson's Guide)

	2015		2016		2017		2018		2019	
	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%
Most Difficult									22	5.3\%
Very Difficult									145	34.9\%
Moderately Difficult									187	44.9\%
Minimally Difficult									19	4.6\%
Non-Competitive									43	10.3\%
TOTAL									416	100\%

NOTE: Analysis is in terms of graduates attending 4-year colleges/universities only (416) not the entire graduating class
Trend Data: MTL Graduates College Attendance by College Competitiveness

	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Most Competitive	14.8%	13.9%	15.5%	11.1%	12.3%	10%	10.8%	15.4%	14.7%	12.9%
Highly Competitive	28.1%	18.8%	17.1%	16.8%	21.2%	22.6%	18.9%	16.8%	16.0%	18.9%
Very Competitive	24.0%	28.0%	27.5%	24.7%	29.8%	34.1%	31.9%	27.7%	29.9%	25.4%
Top 2 Tiers	42.9%	32.7%	32.6%	27.9%	33.5%	32.6%	29.8%	32.1%	30.7%	31.8%
Top 3 Tiers	66.9%	60.7%	60.1%	52.6%	63.3%	66.7%	61.7%	59.7%	60.6%	57.2%

2019 Trend Data: MTL Graduates College Attendance by College Competitiveness

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Most Difficult										5.3%
Very Difficult										34.9%
Moderately Difficult										44.9%
Top 2 Tiers										40.2%
Top 3 Tiers										85.1%

NOTE: Analysis is in terms of graduates attending 4-year colleges or universities only - not the entire graduating class

NUMBER OF STUDENTS WHO GRADUATED EARLY

The data below indicates the number of students who chose to graduate early over the past ten years. Although all graduation credit requirements are met at the end of junior year or in January of a student's senior year, early graduates participate in June's commencement program and receive their diplomas with their respective graduating class.

YEAR	STUDENTS GRADUATED EARLY
2010	10
2011	2
2012	4
2013	3
2014	10
2015	5
2016	8
2017	6
2018	5
2019	3

Hofstra University
Indiana University at Bloomington
Indiana University of Pennsylvania
Ithaca College
John Carroll University
Johns Hopkins University
Kent State University
Kettering University
Kenyon College
Kettering College
Lehigh University
Maine College of Art
Marquette University
Mercyhurst University
Miami University, Oxford
Michigan State University
Mt. San Jacinto College
Muhlenberg College
New Jersey Institute of Technology
New York University
Northeastern University
Northwestern University
Ohio State University
Ohio Technical College
Ohio University
Penn Commercial Business \& Tech School
Pennsylvania State University
Pennsylvania State Univ., Abington
Pennsylvania State Univ., Beaver
Pa. State Univ. Erie - The Behrend College
Pa. State Univ., Greater Allegheny
Pittsburgh Technical College
Point Park University
Rice University
Robert Morris University
Rochester Institute of Technology
Salve Regina University
Slippery Rock University of Pa.
Soka University of America
St. Bonaventure University
Susquehanna University
Temple University
Texas A \& M University
Texas A\&M Univ. Maritime Academy
Thaddeus Stevens College of Tech.
The College of Wooster

The George Washington University
The New School - All Divisions
The Ohio State University
The University of Akron
The University of Alabama
The University of Arizona
The University of Tampa
Towson University
Tufts University
United States Merchant Marine Academy
United States Navy Academy
University of Arkansas
University of California, Santa Barbara
University of Cincinnati
University of Dayton
University of Delaware
University of Kentucky
University of Maryland, College Park
University of Massachusetts, Amherst
University of Miami
University of Michigan
University of Minnesota, Twin Cities
University of North Texas
University of Pennsylvania
University of Pittsburgh
University of Pitt./Greensburg/Johnstown
University of Rhode Island
University of Tennessee, Knoxville
Univ. of Toronto Undergrad. Only
University of Wisconsin, Madison
Vet Tech Institute
Villanova University
Virginia Military Institute
Virginia Tech
Washington and Jefferson College
Washington College
Washington University in St. Louis
Waynesburg University
West Chester University of Pa.
West Virginia University
Western Colorado University
Western Michigan Universityh
Westminster College
Westminster College
Xavier University
Youngstown State University

THE HIGH SCHOOL STUDENT

EXPLANATION AND PRESENTATION OF DATA SOURCES

Summary of 2019 Advanced Placement Scores

Advanced Placement courses follow a prescribed syllabus developed and audited by the College Board. AP courses are designed to equate to the initial year of college/university study in a given subject. Students who score a 3 or above, out of a possible high score of 5 , generally indicates that a student is "qualified" for college level course work; a 4 indicates a student is "well qualified"; and a 5 indicates a student is "extremely well qualified". Therefore, a student scoring a 3 generally receives advanced placement, or college credit, from colleges and universities. The most competitive colleges and universities often require an AP score of 4 or 5 prior to granting credit.

On the following pages, Advanced Placement data is reported on the basis of number and percentage of scores in a given range for the May 2019 administration.

Additionally, the report represents advanced placement scores by course. The report also shows the number of students enrolled in a course versus how many students subsequently chose to participate in testing. It can be difficult to draw a valid analysis of scores due to the discrepancy that often occurs between the number of students taking the class versus those that actually go on to take the test. Students opt not to take the test for a variety of reasons. In some cases, virtually all students enrolled in a given course take the test which assists in drawing valid conclusions about our students' performance and course delivery.

Each AP subject teacher receives an Instructional Planning Report, providing summary data about student performance and related item analysis. Teachers begin reviewing this data in the summer months in preparation for the following school year.
Mt．Lebanon High School
PERCENTAGE OF STUDENTS SCORING A 3，4，OR 5 ON ADVANCED PLACEMENT EXAMS
Note：Percentage includes results for students who took an advanced placement test not included in the

2019 MEAN ADVANCED PLACEMENT SCORES BY SUBJECT

| $\stackrel{\Gamma}{\mathrm{N}}$ | $\stackrel{\odot}{ণ}$ | $\stackrel{N}{ल}$ | $\stackrel{\sim}{0}$ | $\begin{aligned} & \sim \\ & \infty \\ & \end{aligned}$ | $\begin{gathered} \dot{\infty} \\ \end{gathered}$ | $\begin{aligned} & \varrho \\ & \end{aligned}$ | $\underset{\sim}{\underset{\sim}{*}}$ | $\stackrel{ \pm}{\underset{\sim}{*}}$ | $\underset{\sim}{\underset{~}{~}}$ | $\begin{aligned} & \pm \\ & \\ & \hline \end{aligned}$ | $\stackrel{\stackrel{m}{\dot{~}}}{-}$ | $\stackrel{\infty}{\infty}$ | $\stackrel{\Gamma}{\text { ¢ }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 9 |
| :--- | $\stackrel{\ominus}{\odot}$ | ∞ |
| :--- |
| | $\stackrel{N}{\infty}$ $\stackrel{9}{\stackrel{1}{N}}$ $\stackrel{5}{5}$ | $\stackrel{1}{0}$ |
| :--- |
| $\stackrel{0}{6}$ | $\stackrel{M}{ल}$ カレㅎ $\stackrel{L}{0}$ 2.80 | ∞ |
| :--- |
| ∞ |
| |
| | | $\stackrel{N}{N} \underset{\sim}{\sim}$

 3.40 $\begin{array}{cc}\underset{N}{N} & 0 \\ \underset{\sim}{*} & 0 \\ \end{array}$ $\stackrel{0}{\dot{\circ}}$ | \bullet |
| :--- |
| \bullet |
| $\dot{\omega}$ | 3.44「 3.68

$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{\hat{i}}$	$\underset{+}{8}$	$\stackrel{\infty}{\underset{\sim}{\dot{~}}}$	$\stackrel{\odot}{\underset{\sim}{+}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\underset{\sim}{r}}$	$\underset{\sim}{\underset{\sim}{N}}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \text { M } \end{aligned}$	$\begin{aligned} & \circ \\ & \text { en } \\ & \text { n } \end{aligned}$	$\underset{\underset{\sim}{r}}{\stackrel{\rightharpoonup}{r}}$	$\begin{aligned} & \circ \\ & \infty \\ & \text { M } \end{aligned}$	$\underset{\sim}{\sim}$	$\stackrel{10}{\dot{\gamma}}$	$\stackrel{\underset{\sim}{*}}{\underset{\sim}{2}}$	$\underset{\substack{N}}{\substack{n \\ \hline}}$	$\stackrel{0}{0}$
$\stackrel{0}{\mathbf{N}}$	$\underset{\sim}{\hat{N}}$	$\begin{aligned} & \text { O } \\ & \hline+ \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{8}{8} \end{aligned}$	$\stackrel{0}{\stackrel{O}{\sim}}$	$\begin{aligned} & \circ \\ & \text { M } \end{aligned}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{2}}$	$\underset{\sim}{F}$	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \text { N } \end{aligned}$	$\stackrel{M}{+}$	$\begin{aligned} & \infty \\ & \infty \\ & N \end{aligned}$	$\stackrel{\stackrel{O}{N}}{N}$	$\stackrel{0}{\circ}$	$\stackrel{\circ}{\sim}$	$\stackrel{N}{\omega}$	$\stackrel{\ominus}{寸}$	$\stackrel{\infty}{\stackrel{\infty}{N}}$	$\begin{aligned} & \bar{m} \\ & \end{aligned}$	$\stackrel{\sim}{\sim}$
$\stackrel{10}{\stackrel{1}{N}}$	$\underset{\sim}{\mathrm{O}}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	$\stackrel{ষ}{\mathrm{~m}}$	$\underset{\sim}{\top}$	$\begin{aligned} & \circ \\ & \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{N}}$	$\stackrel{\ominus}{+}$	৪্ণ	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \circ \\ & 0 \\ & \text { M } \end{aligned}$	$\stackrel{\ominus}{\dot{+}}$	$\stackrel{\infty}{\infty} \underset{\sim}{\infty}$	$\stackrel{\odot}{\odot}$	$\begin{aligned} & \stackrel{0}{+} \\ & \dot{\gamma} \end{aligned}$	$\underset{\sim}{n}$	$\underset{\underset{\sim}{N}}{\substack{2}}$	$\underset{\sim}{N}$	$\begin{aligned} & \hat{N} \\ & \end{aligned}$	$\stackrel{\text { N}}{\substack{2}}$
$\underset{\sim}{\underset{N}{\prime}}$	$\stackrel{N}{N}$	$\underset{+}{\ominus}$	$\stackrel{\text { O}}{\underset{\sim}{r}}$	$\stackrel{\ominus}{\oplus}$	$\begin{aligned} & \hat{6} \\ & \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{\gamma}}$	$\begin{aligned} & \circ \\ & \dot{\sim} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{j}}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{N} \end{aligned}$	$\begin{gathered} \underset{\sim}{\infty} \end{gathered}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\odot}{\dot{F}}$	$\underset{\sim}{\infty}$	$\underset{\dot{F}}{\underset{F}{2}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\bigcirc}{\bigcirc}$
$\stackrel{m}{N}$	$\begin{aligned} & 8 \\ & \hline 1 \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{N}}$	$\stackrel{\ominus}{\odot}$	$\stackrel{\stackrel{O}{N}}{\underset{\sim}{+}}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\stackrel{\circ}{\dot{r}}$	$\begin{aligned} & \text { ® } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \text { M } \end{aligned}$	$\begin{aligned} & \circ \\ & \text { n } \\ & \text { n } \end{aligned}$	$\underset{\underset{\sim}{\mathrm{O}}}{\stackrel{-}{2}}$	$\stackrel{m}{\dot{r}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\underset{r}{r}}{\dot{\sim}}$	$\begin{aligned} & \text { ザ } \\ & \text { ले } \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \stackrel{1}{N} \\ & \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\oplus}}$	$\stackrel{\oplus}{\dot{-}}$	＋
N	$\stackrel{\infty}{\stackrel{\infty}{\Gamma}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{\sim}{\circ}$	$\stackrel{N}{\mathrm{O}}$	$\stackrel{\ominus}{\bullet}$	$\underset{\sim}{\underset{\sim}{N}}$	$\stackrel{\oplus}{ণ}$	$\begin{aligned} & \bullet \\ & \stackrel{\ominus}{\circ} \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{\gamma}}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\text { N}}{\stackrel{-}{+}}$	$\underset{\sim}{\mathrm{O}}$	$\begin{aligned} & \propto \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \propto \\ & \end{aligned}$	$\stackrel{m}{\dot{\sim}}$	$\stackrel{8}{\circ}$	$\stackrel{\circ}{\infty}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{M}{\text { ¢ }}$

 Note： | ACADEMIC YEAR | MT．LEBANON | PENNSYLVANIA | NATIONAL |
| :--- | :--- | :--- | :--- | 87．7\％

2015	2016	2017

3.86 4.34
3.80
$\stackrel{\stackrel{+}{+}}{\stackrel{+}{+}}$
3.99

∞
∞
ल

$\stackrel{\infty}{\infty} \stackrel{+}{\sim}$
4.60
$ल$
\cdots
\cdots
$4.14 \quad 4.23$
∞
∞
∞
$\stackrel{\infty}{\infty}$
3.70

3.76
4.63
4.26
2.70
$\stackrel{\circ}{ }$
è
$\stackrel{O}{n} \underset{\sim}{N}$ $\stackrel{\infty}{\infty}$
$\stackrel{\wedge}{\dot{\sigma}}$ $\stackrel{8}{\circ}$

$\stackrel{L}{\circ}$
$\stackrel{y}{n}$

2019 AP TREND DATA BY SUBJECT - Enrollment, Participation and National Comparisons

	2019 AP TREND DATA BY SUBJECT - Enrollment, Participation and National Comparisons																	
	2017						2018						2019					
	Students	Students	\%	MTLSD	Nat'l.	Avg.	Students	Students	\%	MTLSD	Nat'l.	Avg.	Students	Students	\%	MTLSD	Nat'l.	Avg.
	Enrolled	Testing	Testing	Mean	Mean	Diff.	Enrolled	Testing	Testing	Mean	Mean	Diff.	Enrolled	Testing	Testing	Mean	Mean	Diff.
Art - Studio	14	7	50.0	4.57	2.94	1.63	17	7	41.2	4.14	3.47	0.67	18	8	44.4	4.63	3.57	1.06
Biology	85	67	79.0	4.09	2.90	1.19	79	61	77.2	4.05	2.86	1.19	91	74	81.3	3.97	2.93	1.04
Calculus AB (New 2019)													98	76	77.6	3.05	2.97	0.08
Calculus BC	54	49	91.0	4.18	3.78	0.40	47	35	74.5	2.80	3.74	-0.94	52	45	86.5	3.82	3.80	0.02
Chemistry	65	63	97.0	3.49	2.67	0.82	51	51	100.0	3.94	2.75	1.19	53	52	98.1	3.81	2.74	1.07
Computer Science A	38	9	24.0	3.44	3.15	0.29	52	7	13.5	2.86	3.17	-0.31	68	17	25.0	2.94	3.26	-0.32
English Lang/Comp	57	36	63.0	4.08	2.77	1.31	46	18	39.1	4.22	2.82	1.40	41	24	58.5	4.29	2.78	1.51
English Lit/Comp	19	12	63.0	4.17	2.69	1.48	24	18	75.0	4.33	2.56	1.77	20	14	70.0	4.14	2.62	1.52
Environmental Science	188	151	80.0	4.21	2.67	1.54	211	180	85.3	3.91	2.62	1.29	182	162	89.0	4.04	2.68	1.36
European History	28	7	25.0	3.86	2.81	1.05	22	14	63.6	3.86	2.89	0.97	41	18	43.9	3.94	2.90	1.04
French Language	6	8	133.0	3.86	3.29	0.57	15	10	66.7	3.70	3.25	0.45	10	8	80.0	4.13	3.30	0.83
German Language	18	9	50.0	3.89	3.39	0.50	20	18	90.0	3.67	3.22	0.45	10	8	80.0	3.38	3.30	0.08
Music Theory	10	6	60.0	3.50	3.02	0.48	19	5	26.3	3.40	3.17	0.23	24	9	37.5	3.11	3.11	0.00
Physics 1 (New 2019)													122	70	57.4	3.69	2.51	1.18
Physics - E \& M	20	12	60.0	4.17	3.49	0.68	23	15	65.2	4.27	3.56	0.71	16	8	50.0	4.63	3.60	1.03
Physics - Mechanics	69	44	64.0	3.89	3.71	0.18	52	37	71.2	3.59	3.52	0.08	54	36	66.7	3.89	3.76	0.13
Psychology	104	52	50.0	3.42	3.06	0.36	111	57	51.4	3.46	3.13	0.33	107	68	63.6	3.82	3.30	0.52
Spanish Language	30	13	43.0	4.15	3.61	0.54	33	17	51.5	3.65	3.68	-0.03	43	14	32.6	3.79	3.71	0.08
Statistics	56	32	57.0	3.44	2.72	0.72	67	39	58.2	3.44	2.85	0.59	74	35	47.3	3.51	2.87	0.64
U.S. History	86	67	78.0	3.27	2.65	0.62	95	76	80.0	3.71	2.66	1.05	62	48	77.4	3.65	2.71	0.94
U.S. Gov. \& Politics	42	15	36.0	3.60	2.58	1.02	61	28	45.9	3.68	2.70	0.98	25	15	60.0	3.33	2.73	0.60
TOTALS	989	659					1045	693					1211	809				
	66.6\%						66.3\%						66.8\%					

CHEMISTRY	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	5	14	10	18	10
\# of 4	29	24	22	16	24
\# of 3	14	19	21	13	16
\# of 2	3	5	9	4	2
\# of 1	0	-	1	-	-
Total Tested	51	62	63	51	52
\% of 5	10\%	23\%	16\%	35\%	19\%
\% of 4 and above	67\%	61\%	51\%	67\%	65\%
\% of 3 and above	94\%	92\%	84\%	92\%	96\%
COMPUTER SCIENCE A	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	2	5	3	-	3
\# of 4	2	9	0	2	4
\# of 3	0	3	5	3	2
\# of 2	0	3	0	1	5
\# of 1	1	-	1	1	3
Total Tested	5	20	9	7	17
\% of 5	40\%	25\%	33\%	0\%	18\%
\% of 4 and above	80\%	70\%	33\%	29\%	42\%
\% of 3 and above	80\%	85\%	89\%	71\%	54\%
ENGLISH LANG/COMP	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	10	12	13	9	11
\# of 4	12	15	13	5	10
\# of 3	3	3	10	3	2
\# of 2	0	1	-	1	1
\# of 1	0	-	-	-	-
Total Tested	25	31	36	18	24
\% of 5	40\%	39\%	36\%	50\%	46\%
\% of 4 and above	88\%	87\%	72\%	78\%	88\%
\% of 3 and above	100\%	97\%	100\%	94\%	96\%
ENGLISH LIT/COMP	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	9	9	5	9	5
\# of 4	4	4	4	6	6
\# of 3	1	4	3	3	3
\# of 2	1	-	-	-	-
\# of 1	0	1	-	-	-
Total Tested	15	18	12	18	14
\% of 5	60\%	50\%	42\%	50\%	36\%
\% of 4 and above	87\%	72\%	75\%	83\%	79\%
\% of 3 and above	93\%	94\%	100\%	100\%	100\%

ENVIRONMENTAL SCIENCE	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	35	37	60	62	54
\# of 4	71	73	66	69	75
\# of 3	16	21	22	22	20
\# of 2	10	11	3	24	12
\# of 1	0	1	-	3	1
Total Tested	132	143	151	180	162
\% of 5	27\%	26\%	40\%	34\%	33\%
\% of 4 and above	80\%	77\%	83\%	73\%	79\%
\% of 3 and above	92\%	92\%	98\%	85\%	91\%
EUROPEAN HISTORY	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	3	-	-	5	5
\# of 4	5	4	6	3	8
\# of 3	4	2	1	5	4
\# of 2	1	2	-	1	1
\# of 1	0	-	-	-	-
Total Tested	13	8	7	14	18
\% of 5					
\% of 4 and above	62\%	50\%	86\%	57\%	72\%
\% of 3 and above	92\%	75\%	100\%	93\%	94\%
FRENCH LANGUAGE	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	2	3	2	2	2
\# of 4	4	2	3	3	5
\# of 3	3	1	3	5	1
\# of 2	0	-	-	-	-
\# of 1	0	-	-	-	-
Total Tested	9	6	8	10	8
\% of 5	22\%	50\%	25\%	20\%	25\%
\% of 4 and above	67\%	83\%	63\%	50\%	88\%
\% of 3 and above	100\%	100\%	100\%	100\%	100\%
GERMAN LANGUAGE	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	4	1	3	5	2
\# of 4	9	-	3	5	2
\# of 3	3	3	2	5	2
\# of 2	0	3	1	3	1
\# of 1	0	-	-	-	
Total Tested	16	7	9	18	8
\% of 5	25\%	14\%	33\%	28\%	25\%
\% of 4 and above	81\%	14\%	67\%	56\%	50\%
\% of 3 and above	100\%	57\%	89\%	83\%	75\%

MUSIC THEORY	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	0	2	1	1	2
\# of 4	0	-	2	-	-
\# of 3	1	1	2	4	4
\# of 2	5	1	1	-	3
\# of 1	2	1	-	-	-
Total Tested	8	5	6	5	9
\% of 5	0\%	40\%	17\%	20\%	22\%
\% of 4 and above	0\%	40\%	50\%	20\%	22\%
\% of 3 and above	13\%	60\%	83\%	100\%	66\%
PHYSICS 1	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	-	-	-	-	18
\# of 4	-	-	-	-	23
\# of 3	-	-	-	-	19
\# of 2	-	-	-	-	9
\# of 1	-	-	-	-	1
Total Tested					70
\% of 5	-	-	-	-	26\%
\% of 4 and above	-	-	-	-	59\%
\% of 3 and above	-	-	-	-	86\%
PHYSICS - E \& M	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	7	7	6	7	5
\# of 4	2	2	3	5	3
\# of 3	1	-	2	3	-
\# of 2	0	1	1	-	-
\# of 1	0	-	-	-	-
Total Tested	10	10	12	15	8
\% of 5	70\%	70\%	50\%	47\%	63\%
\% of 4 and above	90\%	90\%	75\%	80\%	100\%
\% of 3 and above	100\%	90\%	92\%	100\%	100\%
PHYSICS - MECHANICS	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	16	10	14	9	14
\# of 4	13	10	15	12	11
\# of 3	10	11	11	10	6
\# of 2	2	11	4	4	3
\# of 1	0	-	-	2	2
Total Tested	41	42	44	37	36
\% of 5	39\%	24\%	32\%	24\%	39\%
\% of 4 and above	71\%	48\%	66\%	57\%	70\%
\% of 3 and above	95\%	74\%	91\%	84\%	87\%

PSYCHOLOGY (New in 2006)	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	16	26	11	13	18
\# of 4	26	27	15	20	27
\# of 3	11	13	16	8	16
\# of 2	8	3	5	12	7
\# of 1	2	3	5	4	0
Total Tested	63	72	52	57	68
\% of 5	25\%	36\%	21\%	23\%	26\%
\% of 4 and above	67\%	74\%	50\%	58\%	66\%
\% of 3 and above	84\%	92\%	81\%	72\%	90\%
SPANISH LANGUAGE	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	5	7	3	1	2
\# of 4	6	7	9	9	8
\# of 3	2	1	1	7	3
\# of 2	0	-	-	-	1
\# of 1	0	-	-	-	-
Total Tested	13	15	13	17	14
\% of 5	38\%	47\%	23\%	6\%	14\%
\% of 4 and above	85\%	93\%	92\%	59\%	71\%
\% of 3 and above	100\%	100\%	100\%	100\%	92\%
STATISTICS	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	12	8	5	10	6
\# of 4	13	13	12	9	12
\# of 3	25	7	9	10	13
\# of 2	16	4	4	8	2
\# of 1	3	-	2	2	2
Total Tested	69	32	32	39	35
\% of 5	17\%	25\%	16\%	26\%	17\%
\% of 4 and above	36\%	66\%	53\%	49\%	51\%
\% of 3 and above	72\%	88\%	81\%	74\%	88\%
U.S. GOV \& POLITICS (new in 07)	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	4	9	4	6	3
\# of 4	9	7	5	8	3
\# of 3	12	7	3	13	5
\# of 2	8	2	2	1	4
\# of 1	1	-	1	-	-
Total Tested	34	25	15	28	15
\% of 5	12\%	36\%	27\%	21\%	20\%
\% of 4 and above	38\%	64\%	60\%	50\%	40\%
\% of 3 and above	74\%	92\%	80\%	96\%	73\%

U.S. HISTORY	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	12	13	12	19	14
\# of 4	20	20	18	26	13
\# of 3	16	23	16	23	12
\# of 2	4	15	18	6	8
\# of 1	0	4	3	2	1
Total Tested	52	75	67	76	48
\% of 5	23\%	17\%	18\%	25\%	29\%
\% of 4 and above	62\%	44\%	45\%	59\%	56\%
\% of 3 and above	92\%	75\%	69\%	90\%	81\%
TOTAL	2014-15	2015-16	2016-17	2017-18	2018-19
\# of 5	179	207	206	199	225
\# of 4	274	246	236	232	299
\# of 3	146	133	151	169	177
\# of 2	61	62	52	78	94
\# of 1	11	10	14	15	14
Total Tested	671	658	659	693	809
\% of 5	27\%	31\%	31\%	29\%	28\%
\% of 4 and above	68\%	69\%	67\%	62\%	65\%
\% of 3 and above	89\%	89\%	90\%	87\%	87\%

Data compiled from: 2019 The College Board; AP Current Year Score Summary (2019)
AP EQUITY AND EXCELLENCE TREND DATA

Academic Year	$\mathbf{2 0 1 3 - 1 4}$	$\mathbf{2 0 1 4 - 1 5}$	$\mathbf{2 0 1 5 - 1 6}$	$\mathbf{2 0 1 6 - 1 7}$	$\mathbf{2 0 1 7 - 1 8}$	$\mathbf{2 0 1 8 - 1 9}$
$\mathbf{1 0 T H}^{\star}$	10.2%	10.9%	12.4%	10.6%	$\mathbf{1 2 . 0} \%$	$\mathbf{1 6 . 6 \%}$
$\mathbf{1 1 T H}^{\star}$	39.0%	36.3%	37.9%	40.1%	42.4%	41.3%
12TH *	32.5%	38.4%	36.7%	30.2%	31.6%	38.5%
GRADUATING CLASS SUMMARY $^{\star \star}$	44.5%	52.4%	46.2%	46.4%	46.4%	51.1%

[^0]Data compiled from: 2019 The College Board; AP Equity and Excellence (2019)

2019 AMERICAN COLLEGE TEST (ACT) MEAN SCORES

The ACT Assessment is a college admission test in direct competition with the SAT. The ACT Assessment contains four curriculum based tests that measure academic achievement in the areas of English, Mathematics, Reading and Science. The ACT also provides an overall Composite score. In addition to these four curricular areas and the summary composite, students may also opt to complete an additional writing assessment (ACT Plus) new in 2006. The ACT writing component is recommended by our high school counseling staff when students opt to take the ACT.

The ACT is headquartered in lowa City, lowa and today its assessment is accepted at all colleges and universities. The SAT currently has a historical foothold in our area of the country, which partially explains why the vast majority of students at Mt. Lebanon take the SAT. However, increasing competition between the ACT and SAT over the last few years has resulted in nation-wide acceptance of both assessment devices. Often Mt. Lebanon students, who do not fare as well as expected on the SAT, will complete the ACT to see if a relatively higher score can be obtained. Concordance tables reflecting SAT to ACT range comparisons are made available to students and families in the high school guidance office. Counselors regularly recommend that college-bound students sit for an ACT during junior or senior year.

The following report shows the mean score for Mt. Lebanon students on the ACT, as well as the mean score for all students in Pennsylvania and nationally who took the ACT. The scores can range from a low of 1 to a high of 36 for each of the sub-tests (English, Mathematics, Reading and Science). This is also true for the overall Composite score.

The number of participants in 2019 was 265 . The average ACT composite score for Mt. Lebanon students this year was 26.4.

Data compiled from:
http://www.pde.state.pa.us
2019 AMERICAN COLLEGE TEST（ACT）PARTICIPATION RATES \＆MEAN SCORES

0 0 0 0 0 0 0 0	$\underset{\sim}{C}$	$\stackrel{\infty}{\infty}$	$\stackrel{N}{\underset{\sim}{j}}$	$\left\|\begin{array}{l} \underset{\sim}{\dot{~}} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & N \\ & \underset{N}{\circ} \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{c} 0 \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\|\underset{\stackrel{\rightharpoonup}{\mathrm{N}}}{\underset{\sim}{2}}\|$	$\begin{gathered} 9 \\ \stackrel{\rightharpoonup}{2} \\ N \end{gathered}$	$\begin{aligned} & 9 \\ & N \\ & N \end{aligned}$				$\stackrel{M}{N} \underset{\sim}{\underset{N}{N}}$	$\underset{\sim}{\mathrm{N}} \underset{\sim}{\mathrm{~N}}$	$\overline{\mathcal{V}} \underset{\sim}{\underset{N}{N}}$	$\|\stackrel{\rightharpoonup}{\mathrm{N}}\|$	$\underset{\sim}{\sim}$	$\underset{N}{\hat{N}}$				$\sqrt{\underset{N}{N}}$	$\|\stackrel{\Gamma}{\stackrel{\rightharpoonup}{N}}\|$	$\underset{\sim}{9}$	$\|\stackrel{\underset{\sim}{N}}{ }\|$	$\stackrel{O}{\stackrel{1}{N}}$	$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{\infty} \end{gathered}\right.$	$\frac{0}{\mathrm{~N}}$	$\begin{aligned} & \infty \\ & \underset{N}{\infty} \end{aligned}$	N－
$\begin{gathered} \stackrel{0}{U} \\ \stackrel{1}{0} \\ \dot{U} \\ 0 \end{gathered}$	$\underset{\sim}{\underset{\sim}{\underset{~}{2}}}$	$\stackrel{o}{\underset{j}{i}}$	$\underset{N}{\underset{N}{j}}$	$\left\|\begin{array}{l} \mathrm{N} \\ \dot{N} \end{array}\right\|$	$\left\lvert\, \begin{gathered} N \\ \stackrel{N}{n} \end{gathered}\right.$	$\|\underset{\sim}{\stackrel{\rightharpoonup}{N}}\|$	$\left\|\begin{array}{c} \underset{\sim}{9} \\ \stackrel{N}{N} \end{array}\right\|$	$\underset{\sim}{i}$	$\left\|\begin{array}{c} 0 \\ \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{array}\right\|$			$\stackrel{\rightharpoonup}{\dot{N}} \mid \underset{\dot{N}}{\infty}$	$\stackrel{\infty}{i} \mid \underset{\sim}{\lambda}$		$\begin{array}{c\|c} \underset{N}{N} & \underset{\sim}{N} \end{array}$	$\left\lvert\, \begin{aligned} & \stackrel{\sim}{\mathrm{N}} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{N}{n} \end{aligned}\right.$	$\left\|\begin{array}{c} n \\ \underset{\sim}{n} \end{array}\right\|$	$\stackrel{\rightharpoonup}{N}$		$\begin{array}{l\|l} 0 & \\ 0 & 0 \\ \overline{0} & 0 \\ \hline 0 & \dot{N} \\ 0 & \end{array}$		$\left\|\begin{array}{l} \mathbf{o} \\ \stackrel{\rightharpoonup}{N} \end{array}\right\|$	$\underset{\sim}{n}$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{\infty} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \underset{N}{n} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{0}{N} \end{array}\right\|$	$\underset{\sim}{N}$	\|o
	∞	$\begin{aligned} & N \\ & \substack{N \\ N} \end{aligned}$	$\stackrel{N}{\underset{\sim}{j}}$	$\left\|\begin{array}{c} \underset{\sim}{\dot{~}} \\ \dot{d} \end{array}\right\|$	$\underset{\dot{N}}{\dot{\sim}} \mid$	$\left\|\begin{array}{l} \infty \\ \stackrel{N}{N} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \stackrel{0}{N} \end{array}\right\|$	$\begin{gathered} m \\ \dot{e} \\ \end{gathered}$	$\left.\begin{array}{c} 9 \\ \stackrel{N}{\mathrm{~N}} \end{array}\right)$				$\stackrel{\bullet}{\mathrm{N}} \underset{\mathrm{~N}}{\mathbf{N}} \underset{\sim}{2}$	$\stackrel{N}{\mathrm{~N}} \mid \underset{\sim}{\underset{\sim}{n}}$		$\mid \underset{\sim}{\sim}$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{N}{2} \end{aligned}\right.$	$\stackrel{\substack{N \\ \underset{N}{2}}}{ }$	$\mid \underset{\sim}{o}$			$\underset{\sim}{2} \frac{\tilde{n}}{\stackrel{1}{N}}$	$\frac{m}{\stackrel{m}{N}}$	$\stackrel{\Gamma}{\underset{N}{N}}$	$\stackrel{m}{\stackrel{N}{N}}$	$\left\|\begin{array}{l} \dot{\sim} \\ \underset{N}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} ⿳ 亠 丷 厂 犬 \\ \stackrel{N}{2} \end{gathered}\right.$		$\frac{n}{N}$	$\stackrel{\text { N}}{\stackrel{1}{\sim}}$
$\stackrel{c}{\leftrightarrows}$	$\underset{\sim}{n}$	\dot{c}	$\underset{\sim}{\dot{d}}$	$\left\|\begin{array}{c} \underset{\sim}{\dot{~}} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\circ} \\ \stackrel{N}{2} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \stackrel{N}{N} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \stackrel{N}{N} \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ \stackrel{\sim}{2} \end{gathered}\right.$	$\stackrel{+}{\stackrel{\rightharpoonup}{n}}$	$\stackrel{\substack{0 \\ N}}{2}$		$\stackrel{\rightharpoonup}{\mathrm{N}} \underset{\mathrm{~N}}{0} \mathrm{C}$		\hat{N}		$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\mathrm{N}} \end{aligned}\right.$	$\begin{gathered} 0 \\ \underset{N}{2} \end{gathered}$	$\underset{\sim}{N}$	$\stackrel{c}{N}$			$\underset{V}{\underset{N}{\sim}}$	$\mid \underset{\sim}{ন}$	$\begin{aligned} & \substack{9 \\ \underset{\sim}{n} \\ \hline} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{N} \\ & \dot{N} \end{aligned}$	$\left\|\begin{array}{c} \infty \\ \underset{N}{n} \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ \stackrel{N}{\mathrm{~N}} \end{gathered}\right.$	N	\|n	$\stackrel{+}{\text {－}}$
	둥	$\stackrel{\substack{9 \\ \stackrel{N}{2} \\ \hline}}{ }$	$\left\lvert\, \begin{gathered} N \\ \underset{\sim}{2} \\ \hline \end{gathered}\right.$	$\|\stackrel{\Gamma}{\stackrel{\rightharpoonup}{n}}\|$	$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\rightharpoonup}{n} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} 9 \\ \stackrel{9}{\mathrm{~N}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} N \\ \stackrel{N}{N} \\ \underset{N}{2} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} N \\ \underset{N}{2} \end{gathered}\right.$	$\underset{\stackrel{\rightharpoonup}{N}}{\underset{\sim}{2}} \mid$	$\left\lvert\, \begin{array}{c\|c} \infty \\ \infty \\ \infty \\ \sim \end{array}\right.$		$\stackrel{m}{\grave{N}}$	$\stackrel{\leftrightarrow}{\grave{N}} \mid \underset{\substack{c}}{\substack{c}}$		$\underset{~ v}{V}$	$\underset{\sim}{\mathrm{N}} \underset{\sim}{\sim} \underset{\sim}{\sim}$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{N}{2} \end{aligned}\right.$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{N}} \mid$	$\underset{\sim}{n}$			$\underset{\sim}{\mathrm{N}} \underset{\sim}{\circ} \stackrel{\circ}{\sim}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{N}{n} \end{aligned}\right.$	$\left\|\begin{array}{c} N \\ \underset{N}{N} \end{array}\right\|$	$\begin{aligned} & m \\ & \underset{N}{2} \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \underset{\sim}{+} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\underset{\sim}{\dot{N}} \mid$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$	\mathfrak{c}	$\underset{\sim}{\underset{\sim}{c}}$
	$\mathfrak{i n}$	∞	$\stackrel{\sim}{\circ}$	¢	）	N	¢	さ	$\bar{\circ}$	\sim																				
	$\begin{aligned} & n \\ & \hline \end{aligned}$	$\underset{\sim}{c}$	$\stackrel{N}{N}$	$\|\stackrel{\circ}{\infty}\|$	$\|\underset{N}{\underset{N}{2}}\|$	$\left\|\begin{array}{l} 9 \\ \underset{\sim}{2} \end{array}\right\|$	$\stackrel{\underset{\sim}{*}}{\underset{\sim}{2}}$	$\underset{N}{N}$	\hat{N}	$=\begin{aligned} & 10 \\ & \stackrel{0}{0} \end{aligned}$																				
			$\begin{gathered} \underset{\sim}{N} \\ \underset{N}{\mathrm{~N}} \\ \stackrel{\rightharpoonup}{\mathrm{~N}} \end{gathered}$	$\left\|\begin{array}{c} \stackrel{\sim}{c} \\ \underset{N}{N} \\ \stackrel{N}{N} \\ \mid \end{array}\right\|$		$\left\|\begin{array}{c} \stackrel{\circ}{2} \\ \underset{N}{N} \\ \underset{N}{+} \\ \underset{N}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \frac{0}{2} \\ \underset{N}{N} \\ \stackrel{\rightharpoonup}{2} \\ \underset{N}{2} \end{array}\right\|$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{N}{N} \\ & \stackrel{\rightharpoonup}{\alpha} \\ & \hline \end{aligned}$	2018－2019														$\left\lvert\, \begin{gathered} \underset{\sim}{c} \\ \underset{N}{N} \\ \underset{N}{C} \\ \underset{N}{2} \end{gathered}\right.$			$\left\|\begin{array}{c} 0 \\ \underset{\sim}{0} \\ N \\ \frac{1}{2} \\ \underset{N}{2} \end{array}\right\|$			

＊MTLSD and Pennsylvanial data compiled from：ACT Profile Report－College Readiness Letter ＊＊Nation data compiled from：ACT Profile Report－National：Section I，Executive Summary

2019 SUMMARY OF SAT SCORES

The SAT test is a nationally-normed benchmark utilized by colleges and universities as a major admissions indicator. It is designed to help admissions personnel in assessing a student's likelihood of success in a college environment. A product of the Educational Testing Service (ETS) also known as the College Board, the SAT Reasoning test addresses three core areas - Critical Reading, Mathematics and Writing. In the following report, the scores for Evidence-Based Reading and Writing (ERW) and Mathematics are listed separately and compared with both national and Pennsylvania state means. Additionally, data is further broken down by gender.

SAT scores can range from 200-800 on each of the two sections of the test. The cumulative mean score of the Evidence-Based Reading and Writing (ERW) and Mathematics sections for Mt. Lebanon students combined was 1220 (ERW 617, Mathematics 603), 157 points higher than the national mean and 129 points higher than the Pennsylvania mean.

It is significant to note that Mt. Lebanon's mean SAT scores represent 85.3% of the class of 2019 who took the exam. Students of all abilities are taking the SAT test within our district and are being accounted for in very favorable national and state comparisons.

SAT Subject tests are offered in specific content areas. They are often required for admission to the most highly selective colleges and universities. Students typically take only those tests that will be required or recommended for those universities/colleges to which they will be applying. Data provided is from a narrow cross section of our school, state and national populations that self-select to take exams based on college admission intentions. Since the SAT Reasoning test now includes an essay, the SAT Subject test in Writing (which required an essay) was discontinued after the 2005-2006 school year.

Data compiled from: 2019 SAT Annual Report
High School Report: Mt. Lebanon
MT. LEBANON SCHOOL DISTRICT SAT REASONING MEAN SCORES

ERW					NATION			PENNSYLVANIA		
YEAR	MALE	FEMALE	COMBINED	\% OF CLASS TESTING	MALE	FEMALE	COMBINED	MALE	FEMALE	COMBINED
2016-17	602	611	607	85.3	532	534	533	542	538	540
2017-18	608	616	612	81.2	534	539	536	549	546	547
2018-19	605	630	617	85.3	529	534	531	546	545	545
MATH	MT. LEBANON SCHOOL DISTRICT				NATION			PENNSYLVANIA		
YEAR	MALE	FEMALE	COMBINED		MALE	FEMALE	COMBINED	MALE	FEMALE	COMBINED
2016-17	606	576	591		538	516	527	546	518	531
2017-18	613	585	600		542	522	531	554	526	539
2018-19	603	603	603		537	519	528	551	525	537

Data compiled from: 2019 The College Board; 2019 College-Bound Seniors High School Highlights Report for Mt. Lebanon High School

SUMMARY OF PSAT/NMSQT SCORES OF SEMIFINALISTS AND COMMENDED STUDENTS

This report represents a ten* year summary of the Preliminary Scholastic Assessment Test (PSAT)/National Merit Scholarship Qualifying Test (NMSQT). The scores for both verbal and math sections range from 20 to 80 . The total score possible is 240. Designed for students in their junior year, all of the District's sophomores take the PSAT as preparation for the SAT. [The selection index is used for National Merit purposes for juniors only.] Two thirds of the Selection Index is verbal (critical reading and writing scores) and one third is the mathematics score.

Scores are reported both for those selected as Semifinalists and those receiving Commended status.

The following data is a ten* year summary of the total number of National Merit Semifinalists from comparable schools in Pennsylvania. Comparisons with demographically similar local schools offer insight about our top students' performances relative to the performances of top students in other, similar districts. This does not, however, provide an overall reflection of programmatic quality across the spectrum of learners. The number of semifinalists fluctuates year to year depending on a number of variables.

[^1]
MT. LEBANON SCHOOL DISTRICT NATIONAL MERIT SCHOLARSHIP QUALIFYING TEST (NMSQT) SUMMARY

Class of	Students in Class	Students Taking the NMSQT	Semi-Finalist Students	Commended Students	 Commended Students
2010	474	286	5	12	17
2011	427	259	12	19	31
2012	447	249	7	13	20
2013	468	295	3	14	17
2014	436	262	11	16	27
2015	422	245	4	15	19
2016	388	341	10	15	25
2017	435	403	9	9	18
2018	445	402	11	14	25
2019	458	433	5	6	11
2020	455	432	9	13	22

The above data is a ten year summary of the National Merit Scholarship Qualifying Test results for Mt. Lebanon High School. These results are based on the Preliminary Scholastic Assessment Test (PSAT) that was given to eleventh graders in October 2018 (2018-19). Semifinalist standing usually represents students scoring within the top 1% of test takers in Pennsylvania and Commended standing within the top 3\% in Pennsylvania. It is important to note that National Merit indexes vary from year-to-year and state-tostate. In Pennsylvania, for the Class of 2020, the index score was 220 to be a National Merit SemiFinalist.
NATIONAL MERIT SEMIFINALISTS
10-YEAR COMPARISONS OF SOUTHWESTERN PENNSYLVANIA SCHOOLS AND 7-YEAR COMPARISON OF COMPARATOR PENNSYLVANIA SCHOOLS
$2018-2019$ (CLASS OF 2020)

DISTRICT	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	TOTAL
Bethel Park School District	1	0	1	2	2	4	1	1	0	0	12
Central Bucks School District**			15	12	19	17	20	18	28	19	148
Fox Chapel School District	11	9	17	8	9	15	14	3	11	14	111
Gateway School District	4	0	1	1	0	1	0	3	0	3	13
Great Valley School District			10	2	8	10	11	13	4	16	74
Hampton School District			3	0	0	4	2	2	6	8	25
Lower Merion School District*			23	21	18	21	20	23	29	28	183
Lower Moreland School District			3	3	5	5	4	5	4	6	35
Mt. Lebanon School District	12	7	3	11	4	10	9	11	5	9	81
North Allegheny School District	17	17	27	15	28	21	19	29	29	22	224
Peters Township School District			5	1	6	2	5	7	1	3	30
Radnor School District			24	8	11	12	11	13	16	20	115
South Fayette School District			0	2	2	3	3	2	1	1	14
Taylor Alderdice (Pittsburgh Publich School District)	5	12	3	8	3	4	5	7	4	2	53
Tredyffrin-Easttown School District			35	26	44	33	33	34	34	42	281
Unionville-Chadds Ford School District			13	13	19	7	15	18	15	22	122
Upper Dublin School District			11	15	12	12	5	12	16	8	91
Upper St. Clair School District	5	12	14	5	8	14	12	11	4	6	91
Wallingford-Swarthmore School District			12	18	12	5	13	9	7	8	84

* Denotes two (2) high schools
${ }^{* *}$ Denotes three (3) high schools

KEYSTONE EXAMS

Beginning in the 2012-2013 school year, the Keystone Exams were developed by the Pennsylvania Department of Education as end-of-course assessments designed to assess proficiency in the subject areas of Algebra I, Biology, and English Literature. The data included represents that of the Junior cohort's results from the Spring administration of the exam in a particular year, e.g., 2019 data represents the results of the Junior cohort who took the exam in the Spring of 2019 (Class of 2020).

The District maintains consistently high scores in each of the exams.

- Algebra $1=90.9 \%$ Proficient or Advanced
- Biology $=89.5 \%$ Proficient or Advanced
- ELA $=94.0 \%$ Proficient or Advanced

KEYSTONE - ALGEBRA 1

KEYSTONE - BIOLOGY

KEYSTONE - ELA

2019 Keystone Exam Comparator Performance

Mt. Lebanon School District benchmarks its performance against other high performing school districts across the Commonwealth. These Districts include: Central Bucks, Fox Chapel, Great Valley, Hampton, Lower Merion, Lower Moreland, North Allegheny, Peters Township, Radnor, South Fayette, Tredyffrin-Easttown, Unionville-Chadds Ford, Upper Dublin, Upper St. Clair, and Wallingford- Swarthmore.

2019 PSSA performance in English Language Arts (ELA), math, and science compare favorably against this comparator group and compare extremely favorably against all other schools in the Commonwealth.

- Algebra 1 - MTLSD is 90.2\% proficient or advanced. Comparator schools' mean is 88.5%.
- Biology - MTLSD is 90.0\% proficient or advanced. Comparator schools' mean is 88.2\%.
- English Language Arts - MTLSD is 93.5\% proficient or advanced. Comparator schools' mean is 92.4\%.

ALGEBRA 1

Algebra 1 - MTLSD (blue) is 90.2% proficient or advanced. Comparator schools' (green) mean is 88.5%.

BIOLOGY

Biology - MTLSD (blue) is 90.0\% proficient or advanced. Comparator schools' (green) mean is 88.2\%.

ENGLISH LANGUAGE ARTS

English Language Arts - MTLSD (blue) is 93.5\% proficient or advanced. Comparator schools' (green) mean is 92.4%.

MIDDLE SCHOOL AND ELEMENTARY SCHOOL STUDENT

DISTRICT ELA COMPOSITE RESULTS PROFICIENT OR ADVANCED

*First year of a new PSSA Assessment aligned to the new PA Core Standards
**First year of a new modified PSSA Assessment

Data compiled from: Emetrics - District Summary Report
http://paayp.emetric.net

DISTRICT SCIENCE COMPOSITE PROFICIENT OR ADVANCED

Includes Grades 4, 8, and 11
*Includes Grades 4 and 8
http://paayp.emetric.net
Data compiled from: Emetrics \& District Summary Report

[^2]

[^3]

Data Compiled from:
Emetrics 'Getting Results' Packet

Data Compiled from:
Emetrics 'Getting Results' Packet

Data compiled from:
Emetrics 'PSSA' Only

Data compiled from:
Emetrics 'PSSA' Only

PSSA
 GRADE 8 ELA, MATH AND SCIENCE PROFICIENT OR ADVANCED 2018-2019

Initial year of new PSSA Assessment aligned to PA Common Core
**First year a new modified PSSA Assessment in ELA \& Math

2019 PSSA Comparator Performance

Mt. Lebanon School District benchmarks its performance against other high performing school districts across the Commonwealth. These Districts include: Central Bucks, Fox Chapel, Great Valley, Hampton, Lower Merion, Lower Moreland, North Allegheny, Peters Township, Radnor, South Fayette, Tredyffrin-Easttown, Unionville-Chaddsford, Upper Dublin, Upper St. Clair, and Wallingford-Swarthmore.

2019 PSSA performance in English Language Arts (ELA), math, and science compare favorably against this comparator group and compare extremely favorably against all other schools in the Commonwealth.

- ELA - MTLSD is 91.4% proficient or advanced. Comparator schools' mean is 86.6\%.
- Math - MTLSD is 78.4\% proficient or advanced. Comparator schools' mean is 71.9\%.
- Note that our math scores continue to improve while the state and comparators have remained static.
- Science - MTLSD is 90.4% proficient or advanced. Comparator schools' mean is 88.8\%.

ENGLISH LANGUAGE ARTS

ELA - MTLSD (blue) is 91.4% proficient or advanced. Comparator schools' (green) mean is 86.6%.

MATH

Math - MTLSD (blue) is 78.4% proficient or advanced. Comparator schools' (green) mean is 71.9%. Note that MTLSD math scores continue to improve while the state and comparators have remained static.

SCIENCE

Science - MTLSD (blue) is 90.4% proficient or advanced. Comparator schools' (green) mean is 88.8%.

PVAAS Pennsylvania Value Added Assessment System

Growth Measure: The Growth Measure is an estimate of an LEA's/district's influence on the students' academic growth. The Growth Measure for ELA and Mathematics is an estimate of growth or change in achievement from one grade level to the next for a group of students.

Standard Error: All Growth Measures reported on the PVAAS Reports are estimates. There is natural error involved with any estimate. This error, or variation, is expressed in terms of the Standard Error. This allows users to establish a confidence band around the estimated Growth Measure to determine if the standard for PA Academic Growth is met for the specific group of students.

Average Growth Index: A measure of student growth across the tested grade level in an LEAs/district. The index is a value based on the average growth across grade levels (math and ELA) or within a grade/subject or specific content area (science) or Keystone content area, and its relationship to the standard error, so that comparison among LEAs/districts is meaningful. PVAAS utilizes an index (based on standard error) to allow direct comparison of LEAs/districts.

	Significant evidence that the district exceeded the standard for PA Academic Growth
	Moderate evidence that the district exceeded the standard for PA Academic Growth
	Evidence that the district met the standard for PA Academic Growth Moderate evidence
	Moderate Evidence that the district did not meet the standard for PA Academic Growth
Significant evidence that the district did not meet the standard for PA Academic Growth	

2018-2019 PVAAS District Results Pennsylvania Value-Added Assessment System

Grades 4-8 Math:

Growth Measure	Standard Error	Average Growth Index
1.9	0.2	7.76

Grades 4-8 English Language Arts:

Growth Measure	Standard Error	Average Growth Index
.7	0.3	2.89

Grades 4 Science:

Growth Measure	Standard Error	Average Growth Index
20.5	5.0	4.02

Grades 8 Science:

Growth Measure	Standard Error	Average Growth Index
-16.1	1.5	-3.58

Algebra 1:

Growth Measure	Standard Error	Average Growth Index
4.0	1.3	3.18

Biology:

Growth Measure	Standard Error	Average Growth Index
2.2	1.3	1.64

English Language Arts:

Growth Measure	Standard Error	Average Growth Index
-1.1	1.5	-0.73

2018-2019 SCHOOL VALUE ADDED SUMMARY ELA GROWTH MEASURE

ELA	GROWTH MEASURE
GRADE 4	4.0
GRADE 5	-0.0

ELA	GROWTH MEASURE
GRADE 4 - 3 Yr. Average	4.6
GRADE 5 - 3 Yr. Average	1.3

GRADE	3	$\mathbf{4}$	$\mathbf{5}$
State NCE Average	50.0	50.0	50.0
2013 Avg Achievement	62.7	67.1	67.3
2014 Avg Achievement	62.5	64.6	67.5
2015 Avg Achievement	67.2	66.7	70.6
2016 Avg Achievement	64.3	67.7	68.6
2017 Avg Achievement	66.0	70.4	70.9
2018 Avg Achievement	66.2	69.5	71.6
2019 Avg Achievement	$\mathbf{6 5 . 7}$	$\mathbf{7 0 . 1}$	$\mathbf{6 9 . 7}$

www.pde.state.pa us
Data compiled from: pvaas.sas.com

2018-2019 SCHOOL VALUE ADDED SUMMARY ELA GROWTH MEASURE

ELA	GROWTH MEASURE
GRADE 6	-0.1
GRADE 7	-2.7
GRADE 8	2.6

ELA	GROWTH MEASURE
GRADE 6 - 3 Yr. Average	0.3
GRADE 7-3 Yr. Average	-2.8
GRADE 8 - 3 Yr. Average	2.2

GRADE	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
State NCE Average	50.0	50.0	50.0
2013 Avg Achievement	60.8	62.8	62.3
2014 Avg Achievement	63.7	64.5	61.7
2015 Avg Achievement	71.1	65.9	67.3
2016 Avg Achievement	70.8	69.3	68.7
2017 Avg Achievement	69.1	66.6	71.7
2018 Avg Achievement	71.1	67.8	68.4
2019 Avg Achievement	$\mathbf{7 1 . 6}$	$\mathbf{6 9 . 0}$	$\mathbf{7 0 . 6}$

www.pde.state.pa us
Data compiled from: pvaas.sas.com

2018-2019 SCHOOL VALUE ADDED SUMMARY MATH GROWTH MEASURE

MATH	GROWTH MEASURE
GRADE 4	3.1
GRADE 5	4.8

MATH	GROWTH MEASURE
GRADE 4-3 Yr. Average	4.0
GRADE 5-3 Yr. Average	5.1

GRADE	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
State NCE Average	50.0	50.0	50.0
2013 Avg Achievement	61.0	64.3	64.9
2014 Avg Achievement	62.5	63.9	64.5
2015 Avg Achievement	63.8	63.8	64.3
2016 Avg Achievement	61.9	64.5	66.2
2016 Avg Achievement	61.6	66.8	70.9
2017 Avg Achievement	66.4	65.4	71.4
2018 Avg Achievement	66.3	65.6	71.4
2019 Avg Achievement	$\mathbf{6 6 . 4}$	$\mathbf{6 9 . 4}$	$\mathbf{7 0 . 4}$

www.pde.state.pa us
Data compiled from: pvaas.sas.com

2018-2019 SCHOOL VALUE ADDED SUMMARY MATH GROWTH MEASURE

MATH	GROWTH MEASURE
GRADE 6	-1.9
GRADE 7	1.7
GRADE 8	1.6

MATH	GROWTH MEASURE
GRADE 6 - 3 Yr. Average	-2.6
GRADE 7 - 3 Yr. Average	2.0
GRADE 8 - 3 Yr. Average	0.2

GRADE	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
State NCE Average	50.0	50.0	50.0
2013 Avg Achievement	60.8	62.8	62.3
2014 Avg Achievement	63.7	64.5	61.7
2015 Avg Achievement	71.1	65.9	67.3
2016 Avg Achievement	70.8	69.3	68.7
2017 Avg Achievement	63.8	67.1	68.1
2018 Avg Achievement	67.6	66.5	66.0
2019 Avg Achievement	$\mathbf{6 9 . 4}$	$\mathbf{6 9 . 3}$	$\mathbf{6 8 . 4}$

www.pde.state.pa us
Data compiled from: pvaas.sas.com

2018-2019 SCHOOL VALUE ADDED SUMMARY SCIENCE GROWTH MEASURE

SCIENCE	GROWTH MEASURE
GRADE 4	20.5
GRADE 8	-16.1

SCIENCE	GROWTH MEASURE
GRADE 4 - 3 Yr. Average	28.5
GRADE 8 - 3 Yr. Average	-0.4

www.pde.state.pa us
Data compiled from: pvaas.sas.com

2018-2019 SCHOOL VALUE ADDED SUMMARY KEYSTONE EXAMS GROWTH MEASURE

2019	GROWTH MEASURE
ALGEBRA 1	4.0
BIOLOGY	2.2
ELA	-1.1

3 YEAR AVERAGE	GROWTH MEASURE
ALGEBRA 1	3.7
BIOLOGY	2.9
ELA	1.4

www.pde.state.pa us
Data compiled from: pvaas.sas.com

FUTURE READY PA INDEX

FUTURE READY PA INDEX

An important component of Pennsylvania's Every Student Succeeds Act (ESSA) Consolidated State Plan is the creation of the Future Ready PA Index, a comprehensive, public-facing school progress report that includes a wide range of meaningful, evidence-based indicators. The Future Ready PA Index moves beyond a single, summative score to increase transparency around school and student group performance. This index is meant to replace the School Performance Profile (SPP) score and became available to the public October 2019. Note that the information below comes directly from the PA Department of Education.

Overview of the Future Ready PA Index Dashboard

The Future Ready PA Index is designed to provide clarity around specific indicators, including a subset of indicators that will be used in federal accountability determinations under Pennsylvania's recently approved ESSA Consolidated State Plan. Each Future Ready PA Index indicator was selected based on extensive feedback from education stakeholders from across the commonwealth, along with careful evaluation of the practices and systems that tie to continuous school improvement.

The Future Ready PA Index indicators are divided into three main categories, as listed below:

State Assessment Measures:

- Percent Proficient or Advanced on PSSA/Keystone Exam (Mathematics/Algebra I*, Science/Biology, and English Language Arts/Literature*)
- Meeting Annual Growth Expectations (PVAAS) (Mathematics/Algebra I*, Science/Biology, and English Language Arts/Literature*)
- Percent Advanced on PSSA/Keystone Exam (Mathematics/Algebra I, Science/Biology, and English Language Arts/Literature)

On-Track Measures:

- English Language Proficiency*
- Chronic Absenteeism*
- Grade 3 Reading/Grade 7 Mathematics Early Indicators of Success

College and Career Measures:

- Graduation Rate*
- Career Readiness Benchmark*
- Industry Based Learning, including Industry Standards-Based Competency Assessments, High Value Industry Recognized Credentials, or Work Based Learning Experiences)
- Rigorous Courses of Study, including Advanced Placement (AP)/International Baccalaureate (IB)/College Course Offerings, or CTE Career Pathways
- Post-Secondary Transition to School, Military, or Work
*Indicators required for ESSA accountability (annual meaningful differentiation) and identification of schools in need of improvement.

2019 FUTURE READY PA INDEX - ELEMENTARY							
FES Performance (Achievement)				FES PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
FES (Overview)				FES (Overview)			
All				All			
Asian				Asian			
White				White			
Economically Disadvanacaed				Economically Disadvantaced			
Student w wisabilities				Student w wisabilities			
HES Performance (Achievement)				HES PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
HES (Overview)				HES (Overview)			
All				All			
Asian				Asian			
White				White			
Economicaly				$\underset{\text { Economically }}{\text { Disadvantaced }}$			
Student w/isabilitites				Student w/Disabilities			
HOWE Performance (Achievement)				HOWE PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
Howe (Overview)				Howe (Overview)			
All				All			
Asian				Asian			
White				White			
Economically Disadvantaced				$\underset{\text { Economically }}{\text { Disadvantaced }}$			
Student w/isisabilities				Student w/Disabilities			
JES Performance (Achievement)				JES PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
JES (Overview)				JES (Overview)			
All				All			
Asian				Asian			
White				White			
Economically				Economically Disadvanaced			
Student w/isabailities				Student w/Disabilities			
LES Performance (Achievement)				LES PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
LES (Overview)				LES (Overview)			
All				All			
Asian				Asian			
White				White			
$\begin{aligned} & \text { Economically } \\ & \text { Disadvantaced } \end{aligned}$				Economically Disadvantaced			
Student w/isasailities				Student w/Disabilities			
MES Performance (Achievement)				MES PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
MES (Overview)				MES (Overview)			
All				All			
Asian				Asian			
White				White			
$\underset{\substack{\text { Economically } \\ \text { Disadvantaced }}}{\text { and }}$				$\xrightarrow{\text { Economically }}$ Disadvantaed			
Student w/isasailities				Wtudent w/Disabilities			
WES Performance (Achievement)				WES PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
WES (Overview)				WES (Overview)			
All				All			
Asian				Asian			
White				White			
EConomically Disadvantaced				EConomicaly Disadvantaced			
Student w/Disabilities				Student w/Disabilities			

2019 FUTURE READY PA INDEX - SECONDARY							
JMS Performance (Achievement)				JMS PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
JMS (Overview)				JMS (Overview)			
All				All			
Asian				Asian			
White				White			
2 or more Races				2 or more Races			
$\begin{aligned} & \begin{array}{l} \text { Economically } \\ \text { Disadvantaged } \end{array} \end{aligned}$				$\begin{aligned} & \begin{array}{l} \text { Ecomomically } \\ \text { Disadvantaged } \end{array} \end{aligned}$			
Student w/Disabilities				Student w wisabiilities			
MMS Performance (Achievement)				MMS PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
MMS (Overview)				MMS (Overview)			
All				All			
Asian				Asian			
Hispanic				Hispanic			
White				White			
2 or more Races				2 or more Races			
$\begin{aligned} & \begin{array}{l} \text { Ecomically } \\ \text { Disadvantaged } \end{array} \end{aligned}$				$\begin{aligned} & \begin{array}{l} \text { Economically } \\ \text { Disadvantaged } \end{array} \end{aligned}$			
Student w/Disabilities				Student wDisabiilities			
H.S. Performance (Achievement)				H.S. PVAAS (Growth)			
	Bio/Science	ELA	Math		Bio/Science	ELA	Math
HS (Overview)				HS (Overview)			
All				All			
Asian				Asian			
White				White			
Economically Disadvantaged				$\begin{aligned} & \begin{array}{l} \text { Economically } \\ \text { Disadvantaged } \end{array} \end{aligned}$			
Student w/Disabilities				Student wDisabilities			
	Met the 2030 Statewide Goal for Academic Performance or Growth						
	Met the 2019 Statewide Goal for Academic Performance or Growth						
	Did not meet the 2019 Statewide Goal for Academic Performance or Growth						
	Not sufficient Number of Students in the Sub-Group Sample						

APPENDIX

Entrance Difficulty

This index groups colleges by their own assessment of their entrance difficulty level. The colleges were asked to select the level that most closely corresponds to their entrance difficulty, according to the guidelines below. Institutions for which high school class rank and/or standardized test scores do not apply as admission criteria were asked to select the level that best indicates their entrance difficulty as compared to other institutions.

MOST DIFFICULT

More than 75 percent of the freshmen were in the top 10 percent of their high school class and scored over 1310 on the SAT (critical reading and mathematical combined) or over 29 on the ACT (composite); about 30 percent or fewer of the applicants were accepted.

Amherst Coll (MA
Barnard Coll (NY)
Bowdoin Coll (ME)
Brandeis U (MA)
Bryn Mawr Coll (PA)
Bucknell U (PA)
Califormia lnst of Technology (CA)
Camegie Mellon U (PA)
Claremont McKenna Coll (CA)
Colby Coll (ME)
Colgate U (NY)
The Coll of William and Mary (VA)
Columbia U (NY)
Cornell U (NY)
Dartmouth Coll (NH)
Emory U (GA)
Franklin W. Olin Coll of Eng (MA)
Georgetown U (DC)
The George Washington U (DC)
Gettysburg Coll (PA)
Harvard U (MA)
Harvey Mudd Coll (CA)
Haverford Coll (PA)
The Juilliard School (NY)
Kenyon Coll (OH)
Lehigh U (PA)
Massachusetts Inst of Technology (MA)
Middlebury Coll (VT)
Northwestem U (IL)
Pomona Coll (CA)
Princeton U (NJ)
Rice U (TX)
Soka U of America (CA)
Stanford U (CA)
Tufts U (MA)
U of Chicago (IL)
U of Notre Dame (IN)
U of Pennsylvania (PA)
U of Southem Califomia (CA)
Vanderbilt U (TN)
Washington and Lee U (VA)
Washington U in St . Louis (MO)
Webb Inst (NY)
Wellesley Coll (MA)
Wesleyan U (CT)
Williams Coll (MA)

VERY DIFFICULT

More than 50 percent of the freshmen were in the top 10 percent of their high school class and scored over 1230 on the SAT or over 26 on the ACT; about 60 percent or fewer applicants were accepted.

Allegheny Coll (PA)
American U (DC)
American U in Bulgaria (Bulgaria)
The American U in Cairo (Egypt)
ArtCenter Coll of Design (CA)
Austin Coll (TX)
Babson Coll (MA)

Baruch Coll of the City U of New York (NY)
Bates Coll (ME)
Bennington Coll (VT)
Bentley U (MA)
Binghamton U, State U of New York (NY)
Boston Coll (MA)
Boston U (MA)
Carleton Coll (MN)
Case Western Reserve U(OH)
Centre Coll (KY)
Chapman U(CA)
Clarkson U (NY)
Clemson U (SC)
The Coll of New Jersey (NJ)
Coll of the Atlantic (ME)
Coll of the Holy Cross (MA)
The Colorado Coll (CO)
Connecticut Coll (CT)
Davidson Coll (NC)
Denison $\mathrm{U}(\mathrm{OH})$
Dickinson Coll (PA)
Earlham Coll (IN)
Emerson Coll (MA)
Fairfield $U(C T)$
Florida State U (FL)
Fordham U (NY)
Franklin \& Marshall Coll (PA ')
Grinnell Coll (IA)
Gustavus Adolphus Coll (MN)
Hamilton Coll (NY)
Hendrix Coll (AR)
Hillsdale Coll (MI)
Hobart and William Smith Colls (NY)
Illinois Wesleyan U (IL)
James Madison U (VA)
Kalamazoo Coll (MI)
Kettering U (MD)
Knox Coll (IL)
Laguna Coll of Art \& Design (CA)
Lawrence U (WI)
Macalester Coll (MN)
Marist Coll (NY)
Maryland Inst Coll of Art (MD)
Missouri U of Science and Technology (MO)
Mount Holyoke Coll (MA)
Muhlenberg Coll (PA)
New Coll of Fiorida (FL)
New York U (NY)
North Carolina State U (NC)
Northeastern U (MA)
Oberlin Coll (OH)
Occidental Coll (CA)
Oglethorpe U (GA)
The Ohio State U (OH)
Ohio Wesleyan $U(\mathrm{OH})$
Penn State Abington (PA)
Penn State Altoona (PA)
Penn State Berks (PA)
Penn State Erie, The Behrend Coll (PA)
Penn State Harrisburg (PA)
Penn State U Park (PA)
Pepperdine U, Malibu (CA)
Pitzer Coll (CA)
Pratt Inst (NY)
Presbyterian Coll (SC)
Queens Coll of the City U of New York (NY)
Reed Coll (OR)
Rensselaer Polytechnic Inst (NY)
Rhodes Coll (TN)
Rose-Hulman Inst of Technology (IN)
Saint Louis U (MO)
St. Olaf Coll (MN)
Santa Clara U (CA)
Sarah Lawrence Coll (NY)
Scripps Coll (CA)
Sewanee: The U of the South (TN)
Skidmore Coll (NY)
Smith Coll (MA)
Southwesterm U (TX)

Spelman Coll (GA)
State U of New York at New Paltz (NY)
State U of New York Coll at Oneonta (NY)
State U of New York Coll of Environmental Science and
Forestry (NY)
State U of New York Maritime Coll (NY)
Stevens Inst of Technology (NJ)
Stockton U (NJ)
Stonehill Coll (MA)
Stony Brook U, State U of New York (NY)
Syracuse U (NY)
Texas Christian U (TX)
Thomas Aquinas Coll (CA)
Transylvania $U(K Y)$
Trinity U (TX)
Tulane U (LA)
Union Coll (NY)
United States Coast Guard Acad (CT)
United States Merchant Marine Acad (NY)
U at Albany, State U of New York (NY)
U of Califomia, Davis (CA)
U of Califormia, Irvine (CA)
U of Califormia, Los Angeles (CA)
U of Califormia, Riverside (CA)
U of California, San Diego (CA)
U of Califormia, Santa Barbara (CA)
U of Califormia, Santa Cruz (CA)
U of Florida (FL)
U of Mary Washington (VA)
U of Miami (FL)
U of Michigan (MI)
The U of North Carolina at Chapel Hill (NC)
U of Pittsburgh (PA)
U of Richmond (VA)
U of Rochester (NY)
U of San Diego (CA)
The U of Texas at Dallas (TX)
U of Toronto (ON, Canada)
The U of Tulsa (OK)
U of Virginia (VA)
U of Washington (WA)
U of Wisconsin-Madison (WI)
Vassar Coll (NY)
Villanova U (PA)
Wake Forest U (NC)
Washington \& Jefferson Coll (PA)
Wheaton Coll (IL)
Wheaton Coll (MA)
Whitman Coll (WA)
Willamette U (OR)
Wofford Coll (SC)
Worcester Polytechnic Inst (MA)

MODERATELY DIFFICULT

More than 75 percent of the freshmen were in the top ha of their high school class and scored over 1010 on the SA or over 18 on the ACT; about 85 percent or fewer of t applicants were accepted.

Abilene Christian U (TX)
Acadia U (NS, Canada)
Adams State U (CO)
Adelphi U (NY)
Agnes Scott Coll (GA)
Alberta Coll of Art \& Design (AB, Canada)
Albion Coll (MI)
Albright Coll (PA)
Alcorn State U(MS)
Alfred U (NY)
Allen Coll (IA)
Alma Coll (MI)
Alvemo Coll (WI)
American Acad of Art (IL)
American U of Health Sciences (CA)
The American U of Paris (France)
Anderson U (IN)
Andrews U (MI)

Entrance Difficulty

Moderately Difficult

Angelo State U(TX)
Antioch U Los Angeles (CA)
Antioch U Santa Barbara (CA)
Appalachian State U (NC)
Aquinas Coll (MI)
Arcadia U (PA)
Arizona State U at the Downtown Phoenix campus (AZ)
Arizona State U at the Polytechnic campus (AZ)
Arizona State U at the Tempe campus (AZ)
Arizona State U at the West campus (AZ)
Arkansas Tech U (AR)
Asbury U (KY)
Ashland $U(\mathrm{OH})$
Assumption Coll (MA)
Auburn U (AL)
Auburn U al Montgomery (AL)
Augsburg U (MN)
Augustana Coll (IL)
Augustana U(SD)
Aultman Coll of Nursing and Health Sciences (OH)
Aurora U (IL)
Austin Peay State U (TN)
Averett U(VA)
Azusa Pacific U (CA)
Baker U (KS)
Baldwin Wallace U (OH)
Baptist Coll of Health Sciences (TN)
Bard Coll (NY)
Barry U (FL)
Baylor U (TX)
Bay Path U (MA)
Beacon Coll (FL)
Becker Coll (MA)
Belhaven U(MS)
Bellarmine U (KY)
Belmont U (TN)
Bemidji State U (MN)
Benedictine U (IL)
Berea Coll (KY)
Berry Coll (GA)
Bethany Lutheran Coll (MN)
Bethel Coll (KS)
Bethel U(MN)
Biola U (CA)
Birmingham-Southern Coll (AL)
Blackburn Coll (IL)
Blue Mountain Coll (MS)
Blufflon U (OH)
Boise State U (ID)
Bowling Green State $U(\mathrm{OH})$
Bradley U (IL)
Brenau U (GA)
Brescia U (KY)
Bridgewater Coll (VA)
Bridgewater State U (MA)
Brigham Young U (UT)
Brigham Young U-Idaho (ID)
Bryan Coll (TN)
Bryant U (RI)
Buena Vista U (IA)
Buffalo State Coll, State U of New York (NY)
Butler U (IN)
Caim U (PA)
Caldwell U (NJ)
California Baptist U (CA)
Califormia Lutheran U (CA)
Califomia Polytechnic State U, San Luis Obispo (CA)
Califormia State Polytechnic U, Pomona (CA)
California State U, Dominguez Hills (CA)
California State U, Fullerton (CA)
Califormia State U, Long Beach (CA)
California State U, Los Angeles (CA)
Califomia State U Maritime Acad (CA)
Califomia State U, Monterey Bay (CA)
Califomia State U , Northridge (CA)
Califomia State U, Sacramento (CA)
Califormia State U, San Bernardino (CA)
California State U, San Marcos (CA)
Califomia State U, Stanislaus (CA)
Califormia U of Pennsylvania (PA)
Calvin Coll (MI)
Campbellsville $U(K Y)$
Canisius Coll (NY)
Capital $\mathrm{U}(\mathrm{OH})$
Cardinal Stritch U (WI)

Carroll Coll (MT)
Carroll U (WI)
Carson-Newman U(TN)
Carthage Coll (WI)
Catawba Coll (NC)
Cedar Crest Coll (PA)
Cedarville U (OH)
Centenary Coll of Louisiana (LA)
Central Connecticut State U (CT)
Central Methodist U (MO)
Central Michigan U (MI)
Chaminade U of Honolulu (HI)
Champlain Coll (VT)
Charles R. Drew U of Medicine and Science (CA)
Charleston Southem U (SC)
Chatham U (PA)
Chestrut Hill Coll (PA)
Christendom Coll (VA)
Christian Brothers U (TN)
Christopher Newpor U (VA)
The Citadel, The Military Coll of South Carolina (SC)
City Coll of the City U of New York (NY)
Clark Atlanta U (GA)
Clarke U (IA)
Clark U (MA)
Cleveland State $U(\mathrm{OH})$
Coastal Carolina U (SC)
Coe Coil (IA)
Cogswell Polytechnical Coll (CA)
Coker Coll (SC)
The Coll at Brockport, State U of New York (NY)
Coll of Charleston (SC)
The Coll of Idaho (ID)
Coll of Mount Saint Vincent (NY)
The Coll of New Rochelle (NY)
Coll of Saint Benedict (MN)
The Coll of Saint Rose (NY)
The Coll of St. Scholastica (MN)
Coll of the Ozarks (MO)
The Coll of Wooster (OH)
Colorado Christian U(CO)
Colorado State U(CO)
Columbia Coll (SC)
Concordia Coll-New York (NY)
Concordia U (QC, Canada)
Concordia U Chicago (IL)
Concordia U Irvine (CA)
Conciordia U, Nebraska (NE)
Concordia U of Edmonton (AB, Canada)
Concordia U Wisconsin (WI)
Conservatorio de Musica de Puerto Rico (PR)
Converse Coll (SC)
Corban U (OR)
Cornell Coll (IA)
Comish Coll of the Art (WA)
Cottey Coll (MO)
Covenant Coll (GA)
Creighton U (NE)
The Culinary Inst of America (NY)
Culver-Stockton Coll (MO)
Curry Coll (MA)
Daemen Coll (NY)
Dakota State U (SD)
Dallas Baptist U (TX)
Dean Coll (MA)
Defiance Coll (OH)
Delaware State U (DE)
DePaul U (IL)
DePauw U(IN)
DEREE - The American Coll of Greece (Greece)
DeSales U (PA)
Dominican U (IL)
Dominican U of California (CA)
Drake U (IA)
Drew U (NJ)
Drexel U (PA)
Drury U(MO)
Duquesne U (PA)
D'Youville Coll (NY)
East Carolina U(NC)
Eastem Mennonite U (VA)
Eastern Michigan U (MI)
Eastern Nazarene Coll (MA)
Eastern U (PA)
East Stroudsburg U of Pennsylvania (PA)

East Tennessee State $\mathrm{U}(\mathrm{TN})$
East Texas Baptist U (TX)
Eckerd Coll (FL)
ECPI U, Virginia Beach (VA)
Edgewood Coll (WI)
Elizabethtown Coll (PA)
Elmhurst Coll (IL)
Elms Coll (MA)
Elon U (NC)
Embry-Riddle Aeronautical U-Daytona (FL)
Endicott Coll (MA)
Escuela de Artes Plasticas y Dise\&nno de Puerto Rico (PR)
Evangel U (MO)
The Evergreen State Coll (WA)
Fairleigh Dickinson U, Florham Campus (NJ)
Fairleigh Dickinson U, Metropolitan Campus (NJ)
Farmingdale State Coll (NY)
Fashion Inst of Technology (NY)
Felician U(NJ)
FIDM/Fashion Inst of Design \& Merchandising, Los
Angeles Campus (CA)
FIDM/Fashion Inst of Design \& Merchandising, San
Francisco Campus (CA)
Fitchburg State U (MA)
Florida Ag and Mech U (FL)
Florida Aclantic U (FL)
Florida Coll (FL)
Florida Gulf Coast U (FL)
Florida Inst of Technology (FL)
Florida Intl U (FL)
Florida National U (FL)
Florida Southem Coll (FL)
Fort Lewis Coll (CO)
Framingham State U (MA)
Francis Marion U(SC)
Franklin Coll (IN)
Franklin U Switzerland (Switzerland)
Friends U (KS)
Frostburg State U(MD)
Furman U (SC)
Gannon U (PA)
Geneva Coll (PA)
Georgetown Coll (KY)
Georgia Coll \& State U (GA)
Georgian Court U (NJ)
Georgia Southern U (GA)
Georgia Southwestern State U (GA)
Georgia State U (GA)
Golden Gate U (CA)
Goldfarb School of Nursing at Bames-Jewish Coll (MO)
Gonzaga U (WA)
Gordon Coll (MA)
Goshen Coll (IN)
Governors State U (IL)
Graceland U (IA)
Grand Valley State U (MI)
Green Mountain Coll (VT)
Greenville U (IL)
Grove City Coll (PA)
Guilford Coll (NC)
Gutenberg Coll (OR)
Gwynedd Mercy U (PA)
Hallmark U (TX)
Hamline $U(M N)$
Hampden-Sydney Coll (VA)
Hampshire Coll (MA)
Hampton U (VA)
Harding U(AR)
Hardin-Simmons U (TX)
Hartwick Coll (NY)
Hawai i Pacific U(HI)
HEC Montreal (QC, Canada)
Heidelberg U(OH)
High Point U (NC)
Hiram Coll (OH)
Hofstra U (NY)
Hollins U (VA)
Holy Names U (CA)
Hood Coll (MD)
Hope Coll (MI)
Hope Intl U (CA)
Houston Baptist U (TX)
Howard Payne U (TX)
Hunter Coll of the City U of New York (NY)
Husson U (ME)

Huston-Tillotson U (TX)
lilinois Coll (IL)
Immaculata U (PA)
Indiana State U (IN)
Indiana Tech (IN)
Indiana U Bloomington (IN)
Indiana U East (IN)
Indiana U-Purdue U Indianapolis (IN)
Indiana U South Bend (IN)
Indiana Wesleyan $U(\mathbb{N})$
Inter American U of Puerto Rico, Aguadilla Campus (PR)
Inter American U of Puerto Rico, Fajardo Campus (PR)
Inter American U of Puerto Rico, Metropolitan Campus (PR)
Inter American U of Puerto Rico, San Germán Campus (PR)
Iona Coll (NY)
lowa State U of Science and Technology (IA)
Ithaca Coll (NY)
Jacksonville U(FL)
Jefferson Coll of Health Sciences (VA)
John Brown U (AR)
John Carroll U (OH)
John Jay Coll of Criminal Justice of the City U of New York (NY)
John Paul the Great Catholic U (CA)
Johnson C. Smith U (NC)
Johnson U (TN)
John Wesley U(NC)
Judson U (IL)
Juniata Coll (PA)
Kansas City Art Inst (MO)
Kansas Wesleyan U(KS)
Kean U(NJ)
Keene State Coll (NH)
Kennesaw State U (GA)
Kent State U (OH)
The King's Coll (NY)
King's Coll (PA)
King U (TN)
Kutztown U of Pennsylvania (PA)
LaGrange Coll (GA)
Langston U(OK)
La Salle U (PA)
Lasell Coll (MA)
Lawrence Technological U (MI)
Lebanese American U (Lebanon)
Lebanon Valley Coll (PA)
Lehman Coll of the City U of New York (NY)
Le Moyne Coll (NY)
Lenoir-Rhyne U (NC)
LeTourneau U (TX)
Lewis U (IL)
Lincoln Christian U (IL)
Lincoln Memorial U(TN)
Lindenwood U (MO)
Linfield Coli (OR)
Lipscomb U (TN)
Lock Haven U of Pennsylvania (PA)
Longwood U (VA)
Loras Coll (IA)
Louisiana Coll (LA)
Louisiana State U and A\&M Coll (LA)
Loyola U Chicago (IL)
Loyola U New Orleans (LA)
Lubbock Christian U (TX)
Luther Coll (IA)
Lycoming Coll (PA)
Lynchburg Coll (VA)
Lynn U (FL)
Lyon Coll (AR)
Madonna U (MI)
Maharishi U of Management (IA)
Maine Coll of Health Professions (ME)
Malone $U(\mathrm{OH})$
Manchester U (IN)
Manhattan Coll (NY)
Manhattanville Coll (NY)
Mansfield U of Pennsylvania (PA)
Marian U (IN)
Marian U(WI)
Marietta Coll (OH)
Marlboro Coll (VT)
Marquette U(WI)
Marshall U(WV)
Martin Luther Coll (MN)
Mary Baldwin U(VA)
Marymount Manhattan Coll (NY)

Marymount U (VA)
Maryville Coll (TN)
Maryville U of Saint Louis (MO)
Marywood U (PA)
Massachusetts Coll of Art and Design (MA)
Massachusetts Coll of Liberal Arts (MA)
Massachusetts Maritime Acad (MA)
The Master's U (CA)
McDaniel Coll (MD)
McKendree U (IL)
McMurry U (TX)
McNeese State U (LA)
McPherson Coll (KS)
Mercer U, Macon (GA)
Mercy Coll (NY)
Mercy Coll of Ohio (OH)
Mercyhurst U (PA)
Meredith Coll (NC)
Merrimack Coll (MA)
Messenger Coll (TX)
Messiah Coll (PA)
Metropolitan Coll of New York (NY)
Miami $U(\mathrm{OH})$
Michigan State U (MI)
Michigan Technological U(MI)
Middle Tennessee State U (TN)
Millersville U of Pennsylvania (PA)
Milligan Coll (TN)
Millikin U (IL)
Millsaps Coll (MS)
Mills Coll (CA)
Milwaukee School of Eng (WI) '
Minneapolis Coll of Art and Design (MN)
Minnesota State U Moorhead (MN)
Minot State U (ND)
Misericordia U (PA)
Mississippi State U (MS)
Missouri Baptist U (MO)
Missouri State U (MO)
Molloy Coll (NY)
Monmouth Coll (IL)
Montana Tech of The U of Montana (MT)
Montclair State $U(N J)$
Moravian Coll (PA)
Morehouse Coll (GA)
Momingside Coll (IA)
Mount Carmel Coll of Nursing (OH)
Mount Mary U (WI)
Mount Mercy U (IA)
Mount Saint Mary Coll (NY)
Mount St. Mary's U (MD)
Mount Vernon Nazarene U(OH)
Multnomah U(OR)
Murray State U (KY)
Muskingum $U(\mathrm{OH})$
Naropa U (CO)
National Louis U (IL)
Nazareth Coll of Rochester (NY)
Nebraska Methodist Coll (NE)
Neumont Coll of Computer Science (UT)
Newberry Coll (SC)
New Hampshire Inst of Art (NH)
New Jersey City U (NJ)
New Jersey Inst of Technology (NJ)
New Mexico Inst of Mining and Technology (NM)
New Mexico State U (NM)
New Saint Andrews Coll (ID)
The New School Coll of Performing Arts (NY)
The New School-Parsons Paris (France)
New York Inst of Technology (NY)
Niagara U (NY)
North Carolina Wesleyan Coll (NC)
North Central Coll (IL)
North Dakota State U (ND)
Northeastern State U (OK)
Northern Arizona U (AZ)
Northem Illinois U (IL)
Northem Vermont U-Lyndon (VT)
Northland Coll (WI)
Northwestem Coll (IA)
Northwestern Oklahoma State U (OK)
Northwestern State U of Louisiana (LA)
Northwest Missouri State U (MO)
Northwest Nazarene U (ID)
Northwest U (WA)
Notre Dame de Namur U (CA)

Nova Southeastem U (FL)
Oakland U (MI)
Ohio Dominican U(OH)
Ohio Northem U (OH)
Ohio U(OH)
Ohr Somayach/Joseph Tanenbaum Educational Center (NY)
Oklahoma Baptist U (OK)
Oklahoma Christian U(OK)
Oklahoma State U(OK)
Old Dominion U (VA)
Olivet Nazarene U (IL)
O'More Coll of Design (TN)
Oral Roberts U (OK)
Oregon Inst of Technology (OR)
Oregon State U (OR)
Ottawa U (KS)
Otterbein $U(\mathrm{OH})$
Ouachita Baptist U(AR)
Pace U (NY)
Pace U, Pleasantville Campus (NY)
Pacific Lutheran U (WA)
Palm Beach Atlantic U(FL)
Penn State Beaver (PA)
Penn State Brandywine (PA)
Penn State DuBois (PA)
Penn State Fayette, The Eberly Campus (PA)
Penn State Greater Allegheny (PA)
Penn State Hazleton (PA)
Penn State Lehigh Valley (PA)
Penn State Mont Alto (PA)
Penn State New Kensington (PA)
Penn State Schuylkill (PA)
Penn State Shenango (PA)
Penn State Wikes-Barre (PA)
Penn State Worthington Scranton (PA)
Penn State York (PA)
Pennsylvania Coll of Art \& Design (PA)
Pennsylvania Coll of Health Sciences (PA)
Pfeiffer U (NC)
Piedmont Coll (GA)
Pine Manor Coll (MA)
Point Loma Nazarene U (CA)
Point Park U (PA)
Point U(GA)
Portland State U (OR)
Post U(CT)
Prairie View A\&M U (TX)
Principia Coll (LL)
Purchase Coll, State U of New York (NY)
Purdue U (IN)
Purdue U Northwest (IN)
Quinnipiac U (CT)
Ramapo Coll of New Jersey (NJ)
Randolph Coll (VA)
Randolph-Macon Coll (VA)
Regis U (CO)
Research Coll of Nursing (MO)
Resurrection U (IL)
Rhode Island Coll (RI)
Rider U (NJ)
Ringling Coll of Art and Design (FL)
Ripon Coll (WI)
Rivier U (NH)
Roanoke Coll (VA)
Roberts Wesleyan Coll (NY)
Rochester Inst of Technology (NY)
Rockhursst U (MO)
Rocky Mountain Coll (MT)
Rollins Coll (FL)
Roosevelt U (IL)
Rosemont Coll (PA)
Rowan U(NJ)
Rutgers U-Camden (NJ)
Rutgers U-Newark (NJ)
Rutgers U-New Brunswick (NJ)
Sacred Heart U (CT)
The Sage Colls (NY)
Saginaw Valley State U (MI)
St. Ambrose U (IA)
St. Andrews U (NC)
Saint Anselm Coll (NH)
Saint Augustine's U (NC)
St. Bonaventure U (NY)
St. Catherine U(MN)
Saint Charles Borromeo Sem, Overbrook (PA)
Saint Francis U (PA)

Entrance Difficulty
Moderately Difficult

St. John Fisher Coll (NY)
St. John's Coll (MD
St. John's Coll (NM)
Saint John's U (MN)
St. John's U (NY)
St. Joseph's Coll, Long Island Campus (NY)
St. Joseph's Coll, New York (NY)
Saint Joseph's U (PA)
St. Lawrence U (NY)
Saint Leo U (FL)
St. Louis Coll of Pharmacy (MO)
Saint Louis U-Madrid Campus (Spain)
Saint Martin's U (WA)
Saint Mary's Coll of California (CA)
St. Mary's Coll of Maryland (MD)
St. Mary's U (TX)
Saint Mary's U of Minnesota (MN)
Saint Michael's Coll (VT)
St. Norbert Coll (WI)
Saint Peter's U (NJ)
St. Thomas Aquinas Coll (NY)
St. Thomas U (NB, Canada)
Saint Vincent Coll (PA)
Salisbury U (MD)
Samford U (AL)
Sam Houston State U (TX)
San Diego State U (CA)
San Francisco Art Inst (CA)
San Francisco State U (CA)
Savannah Coll of Art and Design (GA)
School of Visual Arts (NY)
Schreiner U (TX)
Seattle Pacific U (WA)
Seattle U (WA)
Seton Hill U (PA)
Shepherd U (WV)
Shorer U (GA)
Siena Coll (NY)
Sierra Nevada Coll (NV)
Simmons Coll (MA)
Simon Fraser U (BC, Canada)
Simpson Coll (IA)
Slippery Rock U of Pennsylvania (PA)
Sonoma State U (CA)
Southeastern Louisiana U (LA)
Southeasterm Oklahoma State U (OK)
Southeast Missouri State U (MO)
Southern Adventist U (TN)
Southerm Arkansas U-Magnolia (AR)
Southem Illinois U Carbondale (IL)
Southern Illinois U Edwardsville (IL)
Southern Methodist U (TX)
Southern Utah U (UT)
Southwest Baptist U (MO)
Spring Hill Coll (AL)
State U of New York at Fredonia (NY)
State U of New York at Oswego (NY)
State U of New York at Plattsburgh (NY)
State U of New York Coll at Cortland (NY)
State U of New York Coll at Geneseo (NY)
State U of New York Coll at Old Westbury (NY)
State U of New York Coll at Potsdam (NY)
State U of New York Coll of Technology at Alfred (NY)
State U of New York Coll of Technology at Delhi (NY)
State U of New York Polytechnic Inst (NY)
Stephen F. Austin State U (TX)
Stetson U (FL)
Stevenson U (MD)
Stevens-The Inst of Business \& Ars (MO)
Suffolk U (MA)
Susquehanna U (PA)
Tabor Coll (KS)
Talladega Coll (AL)
Tarleton State U (TX)
Taylor U (IN)
Temple U (PA)
Tennessee Technological U (TN)
Texas A\&M Intl U (TX)
Texas A\&M U (TX)
Texas A\&M U-Commerce (TX)
Texas A\&M U-Corpus Christi (TX)
Texas A\&M U-Kingsville (TX)
Texas State U (TX)
Texas Tech U (TX)
Thomas Jefferson U(PA)

Thomas More Coll of Liberal Arts (NH)
Tiffin U (OH)
Toccoa Falls Coll (GA)
Towson U (MD)
Trent U (ON, Canada)
Trevecca Nazarene U (TN)
Trine U (IN)
Trinity Christian Coll (IL)
Truman State U (MO)
Tusculum Coll (TN)
Union Coll (NE)
Union U (TN)
Unity Coll (ME)
Université de Sherbrooke (QC, Canada)
U at Buffalo, the State U of New York (NY)
The U of Akron (OH)
The U of Alabama (AL)
The U of Alabama at Birmingham (AL)
The U of Arizona (AZ)
U of Arkansas (AR)
U of Bridgeport (CT)
U of Central Arkansas (AR)
U of Central Florida (FL)
U of Central Missouri (MO)
U of Charleston (WV)
U of Cincinnati (OH)
U of Colorado Boulder (CO)
U of Colorado Colorado Springs (CO)
U of Colorado Denver (CO)
U of Dallas (TX)
U of Dayton (OH)
U of Denver (CO)
U of Dubuque (IA)
U of Evansville (IN)
The U of Findlay (OH)
U of Georgia (GA)
U of Guelph (ON, Canada)
U of Hart ford (CT)
U of Hawaii at Manoa (HI)
U of Houston (TX)
U of Idaho (ID)
U of Illinois at Chicago (IL)
U of Illinois at Springfield (IL)
The U of Kansas (KS)
U of Kentucky (KY)
U of King's Coll (NS, Canada)
\cup of La Veme (CA)
U of Louisiana at Monroe (LA)
U of Louisville (KY)
U of Maine (ME)
U of Maine at Machias (ME)
J of Mary Hardin-Baylor (TX)
U of Maryland, Baltimore County (MD)
U of Maryland, Coll Park (MD)
U of Maryland Eastern Shore (MD)
U of Massachusetts Amherst (MA)
U of Massachusets Boston (MA)
U of Massachusetts Dartmouth (MA)
U of Massachusetts Lowell (MA)
U of Memphis (TN)
U of Michigan-Dearborn (MI)
U of Michigan-Flint (MI)
U of Minnesota, Duluth (MN)
U of Minnesota, Morris (MN)
U of Minnesota, Twin Cities Campus (MN)
J of Missouri (MO)
U of Missouri-St. Louis (MO)
U of Mobile (AL)
U of Montana (MT)
U of Montevallo (AL)
U of Mount Union (OH)
U of Nebraska at Kearney (NE)
U of Nebraska-Lincoln (NE)
U of Nevada, Las Vegas (NV)
J of Nevada, Reno (NV)
U of New England (ME)
U of New Hampshire (NH)
U of New Haven (CT)
U of New Mexico (NM)
U of North Carolina at Asheville (NC) The U of North Carolina at Charlotte (NC) The U of North Carolina at Greensboro (NC) The U of North Carolina at Pembroke (NC)
The U of North Carolina Wilmington (NC)
U of Northem Colorado (CO)

U of Northern lowa (IA)
U of North Florida (FL)
U of North Georgia (GA)
U of North Texas (TX)
U of Oklahoma (OK)
U of Oregon (OR)
U of Pittsburgh at Greensburg (PA)
U of Puerto Rico-Humacao (PR)
U of Puget Sound (WA)
U of Rhode Island (RI)
U of St. Francis (IL)
U of Saint Joseph (CT)
U of Saint Mary (KS)
U of St. Thomas (MN)
U of St. Thomas (TX)
U of San Francisco (CA)
U of Science and Arts of Oklahoma (OK)
The U of Scranton (PA)
U of Sioux Falls (SD)
U of South Alabama (AL)
U of South Carolina (SC)
U of South Carolina Aiken (SC)
U of Southern Indiana (IN)
U of Southem Maine (ME)
U of Southem Mississippi (MS)
The U of Tampa (FL)
The U of Tennessee (TN)
The U of Tennessee at Chattanooga (TN)
The U of Tennessee at Martin (TN)
The U of Texas at Austin (TX)
The U of Texas at San Antonio (TX)
The U of Texas of the Permian Basin (TX)
The U of the Ars (PA)
U of the Pacific (CA)
U of Utah (UT)
U of Vermont (VT)
The U of Virginia's Coll at Wise (VA)
U of Washington, Bothell (WA)
U of Washington, Tacoma (WA)
U of Waterloo (ON, Canada)
U of West Georgia (GA)
U of Wisconsin-Eau Claire (WI)
U of Wisconsin-La Crosse (WI)
U of Wisconsin-Milwaukee (WI)
U of Wisconsin-Parkside (WI)
U of Wisconsin-River Falls (WI)
U of Wisconsin-Stevens Point (WI)
U of Wisconsin-Stout (WI)
U of Wisconsin-Whitewater (WI)
U of Wyoming (WY)
Upper lowa U (IA)
Ursinus Coll (PA)
Utah State U (UT)
Utica Coll (NY)
Valdosta State U(GA)
Valparaiso U(N)
Vanguard U of Southem California (CA)
Vaughn Coll of Aeronautics and Technology (NY)
Vermont Tech Coll (VT)
Virginia Military Inst (VA)
Virginia Polytechnic Inst and State U (VA)
Virginia Wesleyan U(VA)
Wabash Coll (IN)
Waldorf U (IA)
Walsh U (OH)
Wamer Pacific Coll (OR)
Wartburg Coll (IA)
Washington Coll (MD)
Washington State U (WA)
Washington State U-Global Campus (WA)
Washington State U-Spokane (WA)
Washington State U-Tri-Cities (WA)
Washington State U-Vancouver (WA)
Waynesburg U(PA)
Wayme State U (MI)
Webber Intl U (FL)
Webster U(MO)
Wells Coll (NY)
Wentworth Inst of Technology (MA)
West Chester U of Pennsylvania (PA)
Westem Connecticut State U(CT)
Western Illinois U (IL)
Western Michigan U(MI)
Western New England U (MA)
Western Oregon U (OR)

Westem State Colorado U (CO)
Western Washington U (WA)
Westfield State U (MA)
Westminster Coll (PA)
Westminster Coll (UT)
Westmont Coll (CA)
West Texas A\&M U (TX)
West Virginia U(WV)
West Virginia Wesleyan Coll (WV)
Whittier Coll (CA)
Whitworth U(WA)
Widener U (PA)
Wilkes U (PA)
William Jewell Coll (MO)
William Paterson U of New Jersey (NJ)
William Peace U (NC)
William Penn U (IA)
William Woods U (MO)
Winona State U (MN)
Winthrop U (SC)
Wisconsin Lutheran Coll (WI)
Wittenberg U(OH)
Woodbury U (CA)
Worcester State U (MA)
Xavier U of Louisiana (LA)
York Coll of Pennsylvania (PA)

MINIMALLY DIFFICULT

Most freshmen were not in the top half of their high school class and scored somewhat below 1010 on the SAT or below 19 on the $A C T$, up to 95 percent of the applicants were accepted.

Adventist U of Health Sciences (FL)
Alabama State U (AL)
Alaska Bible Coll (AK)
Alaska Pacific U(AK)
Alliant Intl U-San Diego (CA)
American Coll of Thessaloniki (Greece)
American Intl Coll (MA)
Amridge U(AL)
Anderson U(SC)
Austin Graduate School of Theology (TX)
Avila U (MO)
Barclay Coll (KS)
Barton Coll (NC)
Benedictine Coll (KS)
Bennett Coll (NC)
Bethel Coll (IN)
Bethei U (TN)
Bethune-Cookman U(FL)
Bloomsburg U of Pennsylvania (PA)
Bob Jones U (SC)
Bowie State U (MD)
Brewton-Parker Coll (GA)
Bryn Athyn Coll of the New Church (PA)
Califomia Inst of Integra! Studies (CA)
California State U, East Bay (CA)
Caribbean U (PR)
Carlow U (PA)
Cazenovia Coll (NY)
Central Penn Coll (PA)
Central State U(OH)
Chowan U (NC)
Clayton State U (GA)
Coleman U, San Diego (CA)
Coll of Business and Technology-Main Campus (FL)
Coll of Business and Technology-Miami Gardens (FL)
Coll of Coastal Georgia (GA)
Coll of Saint Mary (NE)
The Coll of Westchester (NY)
Colorado Mesa U (CO)
Colorado State U-Pueblo (CO)
Columbia Central U, Yauco (PR)
Columbia Coll (MO)
Columbia Coll Chicago (IL)
Columbus State U (GA)
Compass Coll of Cinematic Arts (MI)
Concordia U, St. Paul (MN)
Concord U (WV)
Cornerstone U (MI)
Criswell Coll (TX)
Delaware Valley U (PA)
Dickinson State U (ND)
DigiPen Inst of Technology (WA)

Dunwoody Coll of Technology (MN)
East Central U (OK)
Eastern Oregon U (OR)
EDP U of Puerto Rico-San Sebastian (PR)
Emmanuel Coll (GA)
Fayetteville State U(NC)
Fenis State U (MI)
Franciscan Missionaries of Our Lady U (LA)
Franklin Pierce $\mathrm{U}(\mathrm{NH})$
Grand View U (IA)
Greensboro Coll (NC)
Hannibal-LaGrange $\mathrm{U}(\mathrm{MO})$
Harrisburg U of Science and Technology (PA)
Hilbert Coll (NY)
Holy Family U (PA)
Humboldt State U (CA)
Idaho State U (ID)
illinois State U (IL)
Indiana U Kokomo (IN)
Indiana U Northwest (IN)
Indiana U of Pennsylvania (PA)
Indiana U Southeast (IN)
Jackson State U (MS)
Johnson U Florida (FL)
Kansas State U (KS)
Kentucky Mountain Bible Coll (KY)
Lamar U (TX)
La Roche Coll (PA)
La Sierra U (CA)
Libenty U(VA)
Life U (GA)
Limestone Coll (SC)
Lincoln Coll (IL)
Lincoln Coll of New England, Southington (CT)
Lincoln U (CA)
Lincoln U (PA)
Lindsey Wilson Coll (KY)
Maria Coll (NY)
Marymount Califomia U (CA)
Metropolitan State U of Denver (CO)
MidAmerica Nazarene U (KS)
Mid-Atlantic Christian U(NC)
Middle Georgia State U(GA)
Missouri Valley Coll (MO)
Morehead State U (KY)
Mount Aloysius Coll (PA)
Mount Marty Coll (SD)
Mount St. Joseph U(OH)
Neumann U (PA)
New England Inst of Technology (RI)
Newman U(KS)
New Mexico Highlands U (NM)
North American U (TX)
North Carolina Central U(NC)
Northcentral U (CA)
Northem State U (SD)
North Greenville U (SC)
Northwest Christian U(OR)
Nyack Coll (NY)
Oakland City $\mathrm{U}(\mathbb{N})$
Ohio Christian U(OH)
Pitsbburg State U (KS)
Polytechnic U of Puerto Rico (PR)
Radford U (VA)
Rasmussen Coll Bloomington (MN)
Rasmussen Coll Brooklyn Park (MN)
Rasmussen Coll Eagan (MN)
Rasmussen Coll Fargo (ND)
Rasmussen Coll Mankato (MN)
Rasmussen Coll New Port Richey (FL)
Rasmussen Coll Ocala (FL)
Rasmussen Coll Rockford (IL)
Rasmussen Coll St. Cloud (MN)
Regent U (VA)
Robert Morris U (PA)
Robert Morris U Illinois (IL)
Rust Coll (MS)
St. Luke's Coll (IA)
Saint Mary-of-the-Woods Coll (IN)
Shaw U(NC)
Silver Lake Coll of the Holy Family (WI)
Southeastern U (FL)
Southwestem Adventist U (TX)
Southwestern Coll (KS)
Spencerian Coll (KY)
State U of New York Coll of Technology at Canton (NY)

Sullivan $U(K Y)$
Sweet Briar Coll (VA)
Tennessee Wesleyan U (TN)
Texas Woman's U (TX)
Thomas U (GA)
Truett McConnell U (GA)
U of Alaska Fairbanks (AK)
U of Central Oklahoma (OK)
U of Houston-Clear Lake (TX)
U of Jamestown (ND)
U of Maine at Fort Kent (ME)
U of Maine at Presque Isle (ME)
U of Minnesota, Crookston (MN)
U of North Alabama (AL)
U of North Dakota (ND)
U of Pittsburgh at Bradford (PA)
U of South Carolina Union (SC)
U of South Dakota (SD)
The U of Texas at El Paso (TX)
U of the Incamate Word (TX)
U of Valley Forge (PA)
The U of West Alabama (AL)
U of Wisconsin-Superior (WI)
Ursuline Coll (OH)
Wade Coll (TX)
Wayland Baptist U (TX)
Westem Kentucky U (KY)
West Virginia State U (WV)
West Virginia U Inst of Technology (WV)
Wichita State U (KS)
Wright State U (OH)
Wright State U-Lake Campus (OH)
Youngstown State U(OH)

NONCOMPETITIVE

Virtually all applicants were accepted regardless of high school rank or test scores.

Academy Coll (MN)
Academy of Art U (CA)
AlC Coll of Design (OH)
American Baptist Coll (TN)
American Public U System (WV)
American Samoa Comm Coll (AS)
Antelope Valley Coll (CA)
Antioch U Midwest (OH)
Appalachian Bible Coll (WV)
Arlington Baptist U (TX)
Athabasca U (AB, Canada)
Athens State $U(A L)$
The Baptist Coll of Florida (FL)
Beulah Heights U (GA)
Boston Architectural Coll (MA)
Bowling Green State U-Firelands Coll (OH)
Brandon U (MB, Canada)
Califormia Christian Coli (CA)
Calumet Coll of Saint Joseph (IN)
Calvary U (MO)
Cameron U(OK)
Capilano U (BC, Canada)
Carlos Albizu U (PR)
Carolina Christian Coll (NC)
Cecil Coll (MD)
Charter Oak State Coll (CT)
Chipola Coll (FL)
Colegio Universitario de San Juan, San Juan (PR)
Coll of Biblical Studies-Houston (TX)
Coll of Central Florida (FL)
Columbia Central U, Caguas (PR)
Columbia Southem U (AL)
Conception Sem Coll (MO)
Crowley's Ridge Coll (AR)
Davenport U, Grand Rapids (MI)
Daytona State Coll (FL)
Dominican Coll (NY)
Donnelly Coll (KS)
Eastem New Mexico U (NM)
EDP U of Puerto Rico (PR)
Emmaus Bible Coll (IA)
Emporia State U (KS)
Feather River Coll (CA)
Florida Keys Comm Coll (FL)
Georgia Gwinnett Coll (GA)
Georgia Highlands Coll (GA)
Georgia Military Coll (GA)

Entrance Difficulty

Noncompetitive

Grambling State U (LA)
Granite State Coll (NH)
Harris-Stowe State U (MO)
Hesston Coll (KS)
Hobe Sound Bible Coll (FL)
Holy Trinity Orthodox Sem (NY)
Horizon U (IN)
Huntington Coll of Health Sciences (TN)
Kent State U at Ashtabula (OH)
Kent State U at East Liverpool (OH)
Kent State U at Geauga (OH)
Kent State U at Salem (OH)
Kent State U at Stark (OH)
Kent State U at Trumbull (OH)
Kent State U at Tuscarawas (OH)
Lincoln U (MO)
Luther Rice Coll \& Sem (GA)
Maranatha Baptist U (WI)
Marylhurst U (OR)
Master's Coll and Sem (ON, Canada)
Medgar Evers Coll of the City U of New York (NY)
Miami Dade Coll (FL)
Mid-America Baptist Theological Sem (TN)
Mid-America Christian U (OK)
Midiand Coll (TX)
Missouri Western State U (MO)
Moris Coll (SC)

National U (CA)
New World School of the Arts (FL)
The Ohio State U at Lima (OH)
The Ohio State U at Mansfield (OH)
The Ohio State U at Marion (OH)
The Ohio State U at Newark (OH)
Ohio U-Zanesville (OH)
Oklahoma State U Inst of Technology (OK)
Oklahoma State U-Oklahoma City (OK)
Pacific Northwest Coll of Art (OR)
Palm Beach State Coll (FL)
Peirce Coll (PA)
Pennsylvania Coll of Technology (PA)
Pensacola State Coll (FL)
Polk State Coll (FL)
Potomac State Coll of West Virginia U (WV)
Pueblo Comm Coll (CO)
Renton Tech Coll (WA)
Rogers State U (OK)
Schoolcraft Coll (MI)
Seminole State Coll of Florida (FL)
Shawnee State U (OH)
Shiloh U (IA)
Southem Vermont Coll (VT)
South Florida State Coll (FL)
Southwestem Assemblies of God U (TX)
State U of New York Empire State Coll (NY)

Tallahassee Comm Coll (FL)
Texas A\&M U-Texarkana (TX)
Thomas Edison State U (NJ)
Trinity Coll of Florida (FL)
Truckee Meadows Comm Coil (NV)
Tyler Jr Coll (TX)
U of Guam (GU)
U of Houston-Downtown (TX)
U of Maryland U Coll (MD)
U of Pikeville (KY)
U of Providence (MT)
U of Saint Francis (IN)
The U of Texas Rio Grande Valley (TX)
U of the Potomac (DC)
U of the Virgin Islands (VI)
The U of Toledo (OH)
Utah Valley U (UT)
Valley City State U (ND)
Vincennes U (IN)
Walsh Coll of Accountancy and Business Administration (MI)

Wayne State Coll (NE)
Weber State U (UT)
Welch Coll (TN)
Wilmington U (DE)

[^0]: * These measures indicate the percentage of students enrolled in grades 10, 11 and 12 scoring a 3 or higher on at least one AP exam during the prior year divided by the total number of students in the respective grade.
 ** The Graduating Class Summary represents the percentage of twelfth graders scoring a 3 or higher on at least one AP exam at any point in their high school careers divided by the total number of the school's seniors.

[^1]: *Ten year summary for previously identified comparable schools in Western
 Pennsylvania, and an eight year comparison for newly identified schools throughout the state.

[^2]: Data compiled from: Emetrics
 http://paayp.emetric.net

[^3]: Data Compiled from:
 Emetrics 'Getting Results' Packet

